Пусть в частном получается многочлен x²+bx+c. Тогда можно составить равенство: x³+ax+1=(x-a)(x²+bx+c)+3. Раскрываем скобки слева и перегруппировываем x³+ax+1=x³-ax²+bx²-abx+cx-ac+3.
x³+ax+1=x³+(b-a)x²+(c-ab)x+3-ac Два многочлена равны, если их степени равны и коэффициенты при одинаковых степенях равны b-a=0 ⇒a=b c-ab=a c-a²=a ⇒ c=a²+a 3-ac=1 3-a·(a²+a)=1 3-a³-a²-1=0 a³+a²-2=0 a³-1+a²-1=0 (a-1)(a²+a+1)+(a-1)(a+1)=0 (a-1)(a²+a+1+a+1)=0 (a-1)(a²+2a+2)=0 так как а²+2а+2=(а+1)²+1>0 при любом а, то а-1=0 а=1 О т в е т. а=1.
1. Аргумент функции - это независимая переменная. 2. Функция - это закон отображения множества Х на множество У - каждому значению х из множества Х соответствует одно единственное значение у из множества У. 3. Область определения функции - это множество допустимых значений аргумента. 4. График функции - это угеометрический образ функции, которые отображает множество точек плоскости, абсциссы и ординаты, связанных данной функцией. 5. Функцию называют линейной, если она задана формулой kx+b, где k - коэффициент прямой пропорциональности, b - свободный член (некое число). Линейную функцию называют функцией прямой пропорциональности, потому, что значения х прямопропорционпльны значениям у. 6. Графиком линейной функции является прямая, угол наклона которой задан коэффициентом k, а распотожение относительно оси 0Х задано свободным членом функции b/
Допустим, что скорость первого велосипедиста = х км/ч,
Поскольку по условию задания скорость одного на 3 км/ч больше скорости другого, значит скорость другого велосипедиста = х-3 км/ч
Время в пути велосипедистов = расстояние между селами / скорость велосипедистов, значит
36/х - время в пути первого велосипедиста
36/ (х-3) - время в пути второго велосипедиста
По условию задания расстояние между селами один велосипедист преодолевает на 1 час быстрее другого.Поэтому выходит, что первый велосипедист тратит на 1 час меньше нежели второй на преодоление расстояния между селами А значит 36/х +1 = 36/ (х-3)
36/х - 36/ (х-3)=-1
(36*(х-3))/(х*(х-3)) - (36*х)/(х*(х-3))=-1
(36х-108)/(х*(х-3)) - (36х)/(х*(х-3))=-1
(36х-108 - 36х)/(х*(х-3))=-1
-108=-(х*(х-3))
108=х²-3х
х²-3х-108=0
Теперь решим квадратное уравнение
Выпишем коэффициенты квадратного уравнения: a = 1,
Тогда можно составить равенство:
x³+ax+1=(x-a)(x²+bx+c)+3.
Раскрываем скобки слева и перегруппировываем
x³+ax+1=x³-ax²+bx²-abx+cx-ac+3.
x³+ax+1=x³+(b-a)x²+(c-ab)x+3-ac
Два многочлена равны, если их степени равны и коэффициенты при одинаковых степенях равны
b-a=0 ⇒a=b
c-ab=a c-a²=a ⇒ c=a²+a
3-ac=1 3-a·(a²+a)=1
3-a³-a²-1=0
a³+a²-2=0
a³-1+a²-1=0
(a-1)(a²+a+1)+(a-1)(a+1)=0
(a-1)(a²+a+1+a+1)=0
(a-1)(a²+2a+2)=0 так как а²+2а+2=(а+1)²+1>0 при любом а, то
а-1=0
а=1
О т в е т. а=1.