1) обе функции непрерывны и все время возрастают на данном отрезке, значит, минимальное и максимальное значение достигается на концах интервала y=x^2 y(2) = 4 - минимальное значение на [2;4] y(4) = 16 - максимальное значение на [2;4] y=x^3 y(2) = 8 - минимальное значение на [2;4] y(4) = 64 - максимальное значение на [2;4] 2) y=x^2 y(-4) < y(5) на интервале [2;4] y(0)=0 - минимальное значение на [-4;5] y(5)=25 - максимальное значение на [-4;5] y=x^3 здесь функция непрерывно возрастает на интервале [-4;5] следовательно, y(-4) = -64 - минимальное значение на [-4;5] y(5) = 125 - максимальное значение на [-4;5]
=((a-2)(a-2) -(a+2)(a+2)) /(a-2)(a+2) =
=(a² -4a +4 -a²-4a -4) /(a² -4) =
= -8a /(a² -4)
2е действие:
= -8a /(a² -4) × (a² -4) /a² =
= -8/a
ответ: -8/a