Примем весь урожай за единицу. По плану нужно было выполнять в день 1:12=1/12 часть работы После 8 дней совместной работы убрано было 8*1/12=8/12=2/3 и осталось убрать 1 -2/3=1/3 часть всей работы. Вторая бригада закончила 1/3 часть работы за 7 дней. Следовательно, каждый день она выполняла (1/3):7=1/21 часть работы. Всю работу вторая бригада могла бы выполнить за 1:1/21=21 день. Первая выполнила бы всю работу за х дней с производительностью 1/х работы в день. Разделив всю работу на сумму производительностей каждой бригады получим количество дней, за которую она могла быть выполнена, т.е. 12 дней. 1:(1/21+1/х)=12 12*(1/21+1/х)=1 12/21+12/х=1 9х=252 х=28 ( дней) ответ: Первая бригада могла бы выполнить работу за 28 дней, вторая - за 21 день.
Если все двугранные углы при основании пирамиды равны, то проекции боковых рёбер совпадают с биссектрисами углов треугольника в основании пирамиды. Вершина пирамиды проецируется в центр вписанной в основание окружности. Радиус r вписанной окружности равен: r = H/tgβ. Сторона АВ = r+(r/tg(α/2)) = r(1+tg(α/2))/tg(α/2) = H(1+tg(α/2))/(tg(α/2)*tgβ). Сторона ВС = АВ*tgα = Htgα(1+tg(α/2))/(tg(α/2)*tgβ). Площадь основания равна: So = (1/2)AB*BC = (1/2)(H²tgα(1+tg(α/2)²/((tg²(α/2)*tg²β)). ответ: V = (1/3)So*H = (1/6)(H³tgα(1+tg(α/2)²/((tg²(α/2)*tg²β)).
По плану нужно было выполнять в день 1:12=1/12 часть работы
После 8 дней совместной работы убрано было
8*1/12=8/12=2/3 и осталось убрать 1 -2/3=1/3 часть всей работы.
Вторая бригада закончила 1/3 часть работы за 7 дней.
Следовательно, каждый день она выполняла (1/3):7=1/21 часть работы.
Всю работу вторая бригада могла бы выполнить за 1:1/21=21 день.
Первая выполнила бы всю работу за х дней с производительностью 1/х работы в день.
Разделив всю работу на сумму производительностей каждой бригады получим количество дней, за которую она могла быть выполнена, т.е. 12 дней.
1:(1/21+1/х)=12
12*(1/21+1/х)=1
12/21+12/х=1
9х=252
х=28 ( дней)
ответ: Первая бригада могла бы выполнить работу за 28 дней,
вторая - за 21 день.