Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
X - скорость катера в стоячей воде y - скорость течения реки или скорость плота x+y - скорость катера по течению x-y - скорость катера против течения 90/(x+y) - время катера на путь по течению 90/(x-y) - время катера на путь против течения 30/y - время плота до встречи 90/(x+y)+60/(x-y) - время катера до встречи Имеем систему 90/(x+y)+90/(x-y)=12,5 90/(x+y)+60/(x-y)=30/y или первое уравнение оставляем и приводим к общему знаменателю, а второе уравнение получаем вычитанием второго из первого. Новая система: 90(x-y+x+y)=12,5(x-y)(x+y) 30/(x-y)=12,5-30/y или 30/(x-y)+30/y=12,5; 30(y+x-y)=12,5y(x-y)
180x=12,5(x-y)(x+y) 30x=12,5y(x-y) Делим первое уравнение на 2-ое: 6=(x+y)/y⇒6y=x+y⇒x=5y подставляем во 2-е уравнение вместо x его значение 5y: 30*5y=12,5y(5y-y)⇒4y*12,5=150; 50y=150⇒y=3; x=15 Скорость катера в стоячей воде - 15 скорость течения - 3