М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ZENsh
ZENsh
04.09.2021 21:19 •  Алгебра

Даны точки a(-5; -4; -2) b(5; 1; -2). найти длину вектора ав

👇
Ответ:
мишка2283
мишка2283
04.09.2021
L=√(5--5)²+(1--4)²+(-2--2)²=11.18
Длина вектора AB 11.18
4,4(73 оценок)
Открыть все ответы
Ответ:
моника59
моника59
04.09.2021

ответ: существует 6 чисел

Объяснение:

1. Заметим, что никакое число, не превосходящее 1010, не может иметь высоту 4. Действительно, наименьшее число высоты 4 — это

2222=216, при этом это число больше 1010.

 2. Между тем числа высоты 3, не превосходящие 1010, существуют. Например, 16=222 имеет высоту 3. Таким образом, задача свелась к подсчёту количества чисел высоты 3, не превосходящих 1010.

 3. Заметим, что

 29≤1010≤210,

 36≤1010≤37,

 44≤1010≤45,

 54≤1010≤55,

 63≤1010≤64.

 4. Найдём количество чисел высоты 3, не превосходящих 1010. Это то же самое, что найти количество решений неравенства:

x1x2x3≤1010, xi≥2.

Если x1=2, то x2x3≤9, отсюда x2=x3=2, или x2=2, x3=3, или x2=3, x3=2. Отсюда получаем 3 решения.

Далее, если x1=3,4,5, получаем, что x2=x3=2, что даёт ещё три решения.

Наконец, при x1≥6 получаем, что x2x3≤3. Но так как xi≥2, то таких x2, x3 не существует.

 5. Таким образом, получаем 3+3=6 чисел максимальной высоты, не превосходящих 1010.

4,6(70 оценок)
Ответ:
dimonbob2005
dimonbob2005
04.09.2021

ответ: n=k=1

Объяснение:

a) Простым перебором убеждаемся, что пары n=k=1 и n=3, k=2 являются решением уравнения. Теперь при n≥4 число 1!+...+n! в десятичной записи оканчивается на 3.

 Действительно,

1!+2!+3!+4!=33, n=4,

 1!+2!+3!+4!+...+n!=33+10k, n≥5,

поскольку n! делится на 10 при n≥5. Но квадрат натурального числа не может в десятичной записи оканчиваться на 3, следовательно, других решений данное уравнение не имеет.

 б) Видим, что уравнение имеет решение n=k=1. Далее, при 2≤n≤6 и n=8 число

1!+2!+3!+4!+...+n!

  делится на 3, но не делится на 27. Значит, при таких n уравнение не имеет решений. Теперь при  n≥9 получаем, что число

  1!+2!+3!+4!+5!+6!+7!+8!+...+n!

  делится на 3, но не делится на 27, поскольку n! делится на 27 при n≥9. Следовательно, уравнение не имеет решений при n≥9. Наконец, при n=7 видим, что

 1!+2!+3!+4!+5!+6!+7!=5913,

но это число не является m-й степенью никакого числа.

Получаем, что единственным решением этого уравнения будет n=k=1.

4,5(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ