М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nikitasemechka
nikitasemechka
11.05.2022 08:51 •  Алгебра

Найти площадь криволинейной трапеции ограниченной графиком функции , осью ox и прямой x=4

👇
Ответ:
секрет93
секрет93
11.05.2022
Определенный интеграл \int\limits^a_b {f(x)} \, dx численно равен площади криволинейной трапеции, ограниченной сверху графиком функции y=f(x), снизу прямой y=0, слева и справа прямыми x=a и x=b.

Найдем точку пересечения графика y= \sqrt{x} с осью х:
\sqrt{x} =0\Rightarrow x=0

\int\limits^4_0 \sqrt{x} \, dx = \int\limits^4_0 x^{ \frac{1}{2} } \, dx = 
 \dfrac{x^{ \frac{1}{2}+1 }}{ \frac{1}{2}+1} |^4_0=
 \dfrac{x^{ \frac{3}{2} }}{ \frac{3}{2}} |^4_0= \frac{2x \sqrt{x} }{3} |^4_0=
\\\
= \frac{2\cdot4 \sqrt{4} }{3} - \frac{2\cdot0 \sqrt{0} }{3} = \frac{8\cdot 2 }{3} = \frac{16}{3}
4,6(85 оценок)
Открыть все ответы
Ответ:
nstratonova
nstratonova
11.05.2022
Надо максимизировать выражение S/t (это, если я все понял правильно, и есть скорость в данной точке).
1)(t^3 + 2t^2 + 5t +8)/t =t^2 + 2t + 5 + 8/t. Чтобы найти максимум данной функции, обратимся к ее производной и найдем точки, в которых она равна 0 либо не существует вообще.
Назовем эту функцию f(t).
f’(t)=2t+2 - 8/t^2.
f’(t)=0.
-8/t^2 +2t+2=0
-4/t^2 +t+1=0(домножим на t^2, t=0 не является корнем)
t^3+t^2-4=0.
А вот здесь я уже сам запутался, как решить это уравнение, но интернет говорит о том, что ответ здесь примерно 1,31.
Также нужно еще подумать, что будет с производной при значении t=0. По крайней мере, я навел на правильный мысли, хоть и не решил до конца)
4,7(50 оценок)
Ответ:
dimalvov1993
dimalvov1993
11.05.2022
Надо максимизировать выражение S/t (это, если я все понял правильно, и есть скорость в данной точке).
1)(t^3 + 2t^2 + 5t +8)/t =t^2 + 2t + 5 + 8/t. Чтобы найти максимум данной функции, обратимся к ее производной и найдем точки, в которых она равна 0 либо не существует вообще.
Назовем эту функцию f(t).
f’(t)=2t+2 - 8/t^2.
f’(t)=0.
-8/t^2 +2t+2=0
-4/t^2 +t+1=0(домножим на t^2, t=0 не является корнем)
t^3+t^2-4=0.
А вот здесь я уже сам запутался, как решить это уравнение, но интернет говорит о том, что ответ здесь примерно 1,31.
Также нужно еще подумать, что будет с производной при значении t=0. По крайней мере, я навел на правильный мысли, хоть и не решил до конца)
4,4(43 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ