М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
рлжжх
рлжжх
27.06.2022 16:23 •  Алгебра

Запишите число в стандартной тригонометрической форме 6-6i; -4-3i

👇
Ответ:
kpucmuna2005
kpucmuna2005
27.06.2022
Хорошо, давайте записывать числа в стандартной тригонометрической форме.

Чтобы записать число 6-6i в стандартной тригонометрической форме, мы должны найти его модуль и аргумент.

Модуль числа находится по формуле: |a+bi| = √(a^2 + b^2)
В нашем случае, a = 6 и b = -6
Подставляя в формулу, получаем модуль числа √((6)^2 + (-6)^2) = √(36 + 36) = √72

Аргумент числа можно найти, используя формулу: arg(a+bi) = arctg(b/a)
В нашем случае, a = 6 и b = -6
Подставляя в формулу, получаем аргумент числа arctg((-6)/6) = arctg(-1) = -π/4

Таким образом, число 6-6i в стандартной тригонометрической форме будет записываться как √72 × e^(-iπ/4), где e - основание натурального логарифма.

Теперь рассмотрим число -4-3i.

Модуль числа: |a+bi| = √(a^2 + b^2)
В нашем случае, a = -4 и b = -3
Подставляя в формулу, получаем модуль числа √((-4)^2 + (-3)^2) = √(16 + 9) = √25 = 5

Аргумент числа: arg(a+bi) = arctg(b/a)
В нашем случае, a = -4 и b = -3
Подставляя в формулу, получаем аргумент числа arctg((-3)/(-4)) = arctg(3/4)

Таким образом, число -4-3i в стандартной тригонометрической форме будет записываться как 5 × e^(i*arctg(3/4)), где e - основание натурального логарифма.

Надеюсь, ответ был понятен. Если у вас есть еще вопросы, не стесняйтесь задавать!
4,4(40 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ