Луч — часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё. Любая точка на прямой разделяет прямую на два луча.
Более точно, каждая точка O на прямой разбивает множество точек этой прямой, отличных от O, на два непустых подмножества — полупрямых — так, что точка O лежит между любыми двумя точками прямой, принадлежащими разным подмножествам. Каждое из этих подмножеств называется открытым лучом с началом в O.
Луч с началом в точке O, содержащий точку A, обозначается «луч ОА» [1].
Для любого неотрицательного числа a на заданном луче с началом O существует единственная точка A, находящаяся на расстоянии a от точки O.
Этот многочлен и есть симметрический. Скорее всего, вам надо выразить его через элементарные симметрические многочлены, т.е. через х+y и xy. В этом случае, можно использовать формулу для суммы нечетных степеней: x⁵+y⁵=(x+y)(x⁴-x³y+x²y²-xy³+y⁴)=(x+y)((x⁴+2x²y²+y⁴)-xy(x²+2xy+y²)+x²y²)= =(x+y)((x²+y²)²-xy(x+y)²+(xy)²)=(x+y)(((x+y)²-2xy)²-xy(x+y)²+(xy)²). Т.е., если обозначить элементарные симметрические многочлены как σ₁=x+y и σ₂=xy, то получаем x⁵+y⁵=σ₁((σ₁²-2σ₂)²-σ₂σ₁²+σ₂²)=σ₁((σ₁²-2σ₂)²-σ₂σ₁²+σ₂²)= =σ₁((σ₁⁴-4σ₁²σ₂+4σ₂²-σ₂σ₁²+σ₂²)=σ₁⁵-5σ₁³σ₂+5σ₁σ₂².
P.S. Для преобразования выражений в скобках несколько раз применялась стандартная школьная процедура выделения полного квадрата. Например, в скобке были слагаемые x⁴+y⁴. К ним добавили и вычли 2x²y². Получилось (x⁴+2x²y²+y⁴)-2x²y², а по формуле квадрата суммы это равно (x²+y²)²-2(xy)². Аналогично, были слагаемые -x³y-xy³. Вынесли за скобки xy, осталось -xy(x²+y²) и опять в скобках выделяем полный квадрат: x²+y²=(x²+2xy+y²)-2xy=(x+y)²-2xy.
x^3 - 3x^2 - 4x = 0,
x(x^2-3x-4)=0,
x1=0,
x^2-3x-4=0,
x2=-1, x3=4;
(2x - 1)^4 - x^2 = 0,
((2x-1)^2)^2-x^2=0,
((2x-1)^2-x)((2x-1)^2+x)=0,
(2x-1)^2-x=0,
4x^2-5x+1=0,
D=9,
x1=1/4, x2=1;
(2x-1)^2+x=0,
4x^2-3x+1=0,
D=-7<0; нет решений
x^3 - 3x^2 - x +3 = 0,
x^2(x-3)-(x-3)=0,
(x-3)(x^2-1)=0,
x-3=0, x1=3;
x^2-1=0, x^2=1, x2=-1, x3=1