М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vifi
vifi
24.08.2022 21:50 •  Алгебра

Пять волов и два барана стоят 11 таэлов а в 2 вола ..

👇
Ответ:
RTAKZM
RTAKZM
24.08.2022
Пусть Х стоит вол, а баран стоит Y. Получаем уравнение
5 * Х + 2 * Y = 11
2 * X + 8 * Y = 8
Домножив второе уравнение на 2,5 , получаем 5 * Х + 20 * Y = 20
Отняв от полученного уравнения первое, получаем 18 * Y = 9 или Y = 0,5
Тогда Х = 4 - 4 * Y = 4 - 2 = 2
Итак, вол стоит 2 рубля, а баран - 50 копеек
4,8(4 оценок)
Открыть все ответы
Ответ:
4747384673838
4747384673838
24.08.2022
x^4+2x^3-4x^2-2ax+4a-a^2=0 \\ x^4-a^2+2x^3-4x^2-2ax+4a=0 \\ (x^2-a)(x^2+a)+2x^2(x-2)-2a(x-2)=0 \\ (x^2-a)(x^2+a)+2(x-2)(x^2-a)=0 \\ (x^2-a)(x^2+a+2(x-2))=0 \\ (x^2-a)(x^2+a+2x-4))=0 \\ (x^2-a)(x^2+2x+a-4)=0 \\ (x- \sqrt{a} )(x+ \sqrt{a} )(x^2+2x+a-4)=0
произведение равно нулю, когда хотя бы один из множителей равен нулю, а остальные имеют смысл.

Уравнение четвертой степени может иметь максимум 4 действительных различных корня: x₁; x₂; x₃; x₄
Первые два корня: x₁=√a и x₂=-√a
квадратное уравнение: x²+2x+a-4=0 

1)имеет два корня, если дискриминант больше нуля (D>0)
2)имеет один корень, если D=0
3)не имеет корней, если D<0

3-ий случай нас не интересует, так как исходное уравнение будет иметь только два корня: x₁=√a и x₂=-√a

анализируем исходное уравнение,
если x₁=x₂  =>  √a=-√a  => a=0
тогда квадратное уравнение  x²+2x+a-4=0 - должно иметь два корня, (причем ни один из этих корней не должен равняться нулю) чтобы было хотя бы 3 корня у исходного уравнения

1) \left \{ {{a=0} \atop {D\ \textgreater \ 0}} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{a=0} \atop {4-4*(a-4)\ \textgreater \ 0}} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{a=0} \atop {4-4a+16\ \textgreater \ 0}} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{a=0} \atop {20\ \textgreater \ 4a}} \right. \ \\ \\ \ \textless \ =\ \textgreater \ \ \left \{ {{a=0} \atop {a\ \textless \ 5}} \right.\ \ \textless \ =\ \textgreater \ \ a=0
то есть a=0 подходит для нашего условия.

рассматривать a<0, нет смысла, так как x₁=√a и x₂=-√a
"а" под квадратным корнем, значит "а" должно быть больше или равно нулю.
Если x₁≠ x₂ , тогда "а" может быть любым положительным числом (а>0)
и уже будет два корня. Следовательно квадратное уравнение может иметь один или два корня, чтобы всего было не менее 3-х корней.

2) \ \left \{ {{a\ \textgreater \ 0} \atop {D \geq 0}} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{a\ \textgreater \ 0} \atop {a \leq 5}} \right. \ \ \textless \ =\ \textgreater \ \ 0\ \textless \ a \leq 5

c учетом того, что а=0 или а∈(0;5], получается, что а∈[0;5]

НО и это еще не все!

Уравнение четвертой степени может иметь меньше 3-х корней, если
х₁=х₃ и х₂=х₄

или наоборот:
х₁=х₄ и х₂=х₃

Найдем корни квадратного уравнения: х₃ и х₄
 
x^2+2x+a-4=0 \\ \\ D=4-4(a-4)=4(1-a+4)=4(5-a) \\ \sqrt{D} = \sqrt{4(5-a)}=2 \sqrt{5-a} \\ \\ x_{3,4}= \frac{-2^+_-2 \sqrt{5-a} }{2} =-1^+_- \sqrt{5-a} \\ \\ 3) \ \left \{ {{x_1=x_3} \atop {x_2=x_4}} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{ \sqrt{a} =-1+ \sqrt{5-a} } \atop {- \sqrt{a}=-1- \sqrt{5-a} }} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{ \sqrt{a}+1= \sqrt{5-a} } \atop { \sqrt{a}=1+ \sqrt{5-a} }} \right. \ \ \textless \ =\ \textgreater \ \ \\ \\ \ \textless \ =\ \textgreater \ \ \left \{ {{a+2 \sqrt{a} +1=5-a} \atop {a=1+2 \sqrt{5-a}+5-a }} \right. \ \ \textless \ =\ \textgreater \ \
\ \textless \ =\ \textgreater \ \ \left \{ {{2 \sqrt{a}=4-2a} \atop {2 \sqrt{5-a}=2a-4 }} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{ \sqrt{a} =2-a} \atop { \sqrt{5-a}=a-2 }} \right. \ \ \textless \ =\ \textgreater \ \

Дальше можешь сам(а) дорешать и убедится, что решений у этой системы нет

4) \ \left \{ {{x_1=x_4 \atop {x_2=x_3}} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{ \sqrt{a}=-1- \sqrt{5-a} } \atop {- \sqrt{a} =-1+ \sqrt{5-a} }} \right. \ \ \textless \ =\ \textgreater \ \ \left \{ {{ \sqrt{a}+ \sqrt{5-a} =-1 } \atop {\sqrt{a}+ \sqrt{5-a} =1}} \right.

эта система так же не имеет решений.

Были рассмотрены все случаи (по-моему мнению)

ОТВЕТ:  а∈[0;5]
4,8(64 оценок)
Ответ:
sapesalex
sapesalex
24.08.2022

#1

а)

 {(y^{10})}^{6} \times { {(y}^{5})}^{5} \times ( { {(y}^{3})}^{2} = \\ = {y}^{60} \times {y}^{25} \times {y}^{6} = {y}^{91}

б)

 {27}^{3} \times {3}^{6} \times {81}^{4} = {3}^{9} \times {3}^{6} \times {3}^{16} = \\ = {3}^{31}

в)

( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y} )^{4} \times ( \frac{x + y}{x - y} )^{11} = \\ = ( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y})^{4} \times ( \frac{x - y}{x + y})^{ - 11} = \\ = ( \frac{x - y}{x + y})^{ - 5} \div ( \frac{x + y}{x - y} )^{4} = \\ = {( \frac{x + y}{x - y})}^{5} \div ( \frac{x + y}{x - y} )^{4} = \\ = \frac{x + y}{x - y}

г)

 {8}^{9} \div 16^{3} \times {128}^{3} \div {64}^{2} = {2}^{27} \div {2}^{12} \times {2}^{21} \div {2}^{12} = \\ = {2}^{24}

4,6(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ