Так как все три встречи произошли когда парни бежали друг к другу то их скорости складываются. Следовательно если принять расстояние между деревьями за х то скорость одного будет V1= 300/t ; А скорость второго V2=(х-300)/t так как 3-я встреча произошла на расстоянии 400м от сосны значит Бегун бежавший изначально от сосны успел пробежать (х-300)+х+400=2х+100; А второй бегун соответственно 2х-100;учитывая скорости бегунов найдем t3=(2x+100)/(300/t)=(2x+100)*t/300 В тоже время для второго бегуна t3=(2x-100)/((x-300)/t)=(2x-100)*t/(x-300)приравняв получим (2х+100)/300=(2х-100)/(х-300) (2x+100)(x-300)=(2x-100)*300 2x^2+100x-600x-30000=600x-30000; 2x^2-1100x=0 x(2x-1100)=0 x0 или 2х-1100=0 х=550метров!
Но если немного покопать дальше, начинаются совсем интересные вещи. Найдем, какое максимальное значение площади может иметь прямоугольный треугольник с гипотенузой c. Ясно, для этого у него должна быть максимально возможная высота. Опишем окружность вокруг треугольника, поскольку он прямоугольный, центр окружности совпадает с серединой гипотенузы. Теперь становится очевидным, что максимальная высота равна радиусу окружности, то есть c/2. Отсюда Площадь равна (1/2)c·(c/2)=c^2/4. В нашем случае c=13, S_(max)=169/4=42,25. Поэтому площадь прямоугольного треугольника с гипотенузой 13 не может равняться 60,
Примите мои соболезнования в связи с кончиной задачи
составим и решим уравнение
х + х+70=180
2х=180-70
2х=110
х=55
Первый угол - 55°
55°+70°=125° - Второй угол.
ответ: 55° и 125°