Построй графики этих уравнений на координатной плоскости XOY. 2|x|+3|y| = 6 - этот график симметричен относительно оси ОХ и симметричен относительно оси ОУ, т.к. замены x на -x, y на -y фактически не изменяют само уравнение. Фактически - это ромб, диагоналями которого являются оси OX и OY. x^2 + y^2 = a, график этого уравнения - это окружность с центром в начале координат и радиусом R = . При различном радиусе этой окружности будет разное количество пересечений ромба с окружностью. Нужно исследовать этот вопрос геометрически.
1) pi/2 < a < pi, поэтому sin a > 0, cos a < 0 cos a = -√6/4; cos^2 a = 6/16 sin^2 a = 1 - cos^2 a = 1 - 6/16 = 10/16; sin a = √10/4 tg a = sin a / cos a = (√10/4) : (-√6/4) = -√10/√6 = -√5/√3 = -√15/3
2) 0 < a < pi/2, поэтому sin a > 0, cos a > 0 sin a = √2/3; sin^2 a = 2/9 cos^2 a = 1 - sin^2 a = 1 - 2/9 = 7/9; cos a = √7/3 tg a = sin a / cos a = (√2/3) : (√7/3) = √2/√7 = √14/7
3) 3pi/2 < a < 2pi, поэтому sin a < 0, cos a > 0 cos a = 15/17; cos^2 a = 225/289 sin^2 a = 1 - cos^2 a = 1 - 225/289 = 64/289; sin a = -8/17 tg a = sin a / cos a = (-8/17) : (15/17) = -8/15
1) pi/2 < a < pi, поэтому sin a > 0, cos a < 0 cos a = -√6/4; cos^2 a = 6/16 sin^2 a = 1 - cos^2 a = 1 - 6/16 = 10/16; sin a = √10/4 tg a = sin a / cos a = (√10/4) : (-√6/4) = -√10/√6 = -√5/√3 = -√15/3
2) 0 < a < pi/2, поэтому sin a > 0, cos a > 0 sin a = √2/3; sin^2 a = 2/9 cos^2 a = 1 - sin^2 a = 1 - 2/9 = 7/9; cos a = √7/3 tg a = sin a / cos a = (√2/3) : (√7/3) = √2/√7 = √14/7
3) 3pi/2 < a < 2pi, поэтому sin a < 0, cos a > 0 cos a = 15/17; cos^2 a = 225/289 sin^2 a = 1 - cos^2 a = 1 - 225/289 = 64/289; sin a = -8/17 tg a = sin a / cos a = (-8/17) : (15/17) = -8/15
2|x|+3|y| = 6 - этот график симметричен относительно оси ОХ и симметричен относительно оси ОУ, т.к. замены x на -x, y на -y фактически не изменяют само уравнение. Фактически - это ромб, диагоналями которого являются оси OX и OY.
x^2 + y^2 = a, график этого уравнения - это окружность с центром в начале координат и радиусом R =
При различном радиусе этой окружности будет разное количество пересечений ромба с окружностью. Нужно исследовать этот вопрос геометрически.