1 + cosx = ctg(x/2) || в ОДЗ: sin(x/2)≠0|| ⇔ 2cos²(x/2) =cos(x/2)/sin(x/2) ⇔
cos(x/2) * 2 sin(x/2)*cos(x/2) = cos(x/2) ⇔ cos(x/2)* sinx = cos(x/2)⇔ cos(x/2)* sinx - cos(x/2) =0 ⇔ cos(x/2)*(sinx -1) =0 .
* * * [ cos(x/2) = 0 ; sinx - 1 =0. → совокупность уравнений написанной в одной строчке → означает cos(x/2) = 0 или sinx -1 =0 * * *
- - - - - - - -
а) cos(x/2) = 0 ⇒ x/2 =π/2 +πk ⇔ x =π +2πk , k ∈ℤ
* * * x =π +2πk =π(2k +1) = πn , где n нечетное целое число * * *
б) sinx - 1 =0 ⇔ sinx = 1 ⇒ x=π/2 +2πk , k ∈ℤ
ответ : π +2πk ; π/2 +2πk , k ∈ℤ
2-ой
1+cosx =2cos²(x/2) / (cos²(x/2)+sin²(x/2) ) =2ctg²(x/2) /(1+ctg²(x/2)
поэтому 2ctg²(x/2) /(1+ctg²(x/2) =ctg(x/2) * * * (1+ctg²(x/2) ≠ 0* * *
2ctg²(x/2) =ctg(x/2) * (1+ctg²(x/2))⇔ctg(x/2) *(ctg²(x/2) - 2ctg(x/2) +1 ) ⇔
ctg(x/2) *(ctg(x/2) - 1 )² =0 ⇒ ctg(x/2) = 0 или ctg(x/2) = 1 ⇒
x/2 = π/2+ πk или x/2 =π/4 + πk
x = π+2πk или x = π/2 +2πk , k ∈ℤ
D= 169-144=25
x1=2/3
x2=1.5
метод интервалов: ставим штрихи в 2/3 и 1,5. Подставляем значения и получаем ответ в промежутке ( от минус бесконечности до 2/3] и [1,5 до плюс бесконечности)
2.25x^2-20x+4<=0
D= 400-400=0
Х=0,4
метод интервалов, ставим штрих в значении 0,4 и подставляем значения
получаем ответ х>0.4