1) Безболезненно возводим все в квадрат, получим (x^2-5x)^2=(4x)^2
(x^2-5x-4x)(x^2-5x+4x)=0
x=0, 1, 9
2) Уравнение квадратное относительно |x|=t: t^2-6t+5=0, t=5 or 1; x=+-1,+-5
3) Можно опять возвести в квадрат или записать совокупность. Так или иначе, x^2-5x+-6=0. x=2,3,6,-1
4) Тут можно и геометрическим смыслом модуля попользоваться. Сумма расстояний от x^2 до точек 4 и 9 равно 12. Отсюда либо точка x^2 правее 9 (тогда x^2=12,5), либо точка левее 4 (тогда x^2=0.5). x=+-sqrt(2)/2, +-5sqrt(2)/2
=(2(3x-5) +2x+1 +7(2x-3)) /14 =
=(6x -10 +2x +1 +14x -21) /14 =
=(22x -30) /14 =2(11x -15) /14 =(11x -15) /7