ответ: 60 см
Объяснение:
Пусть гипотенуза прямоугольного треугольника х см, ( х>16) тогда согласно условия задачи, один из катетов равен (х-16) см, а другой катет равен (х-2) см.
По Теореме Пифагора следует:
х²=(х-16)²+(х-2)²
х²=х²-32х+256+х²-4х+4
х²-х²+32х-256-х²+4х-4=0
-х²+36х-260=0 (* на (-1)
х²-36х+260=0
х1,2=(36+-D)/2
D=√(36²-4*1*260)=√(1296-1040)=√256=16
х1,2=(36±16)/2
х1=(36+16)/2
х1=26
х2=(36-16)/2=10 - не подходит, так как х>16
Тогда катеты равны 26-16=10 26-2=24
Периметр это есть сумма всех трех сторон:
Р=26+10+24=60 см
ответ : 60 см
1)рассмотрим путь ПО теченю реки:
расстояние(s)= 48
скорость(v)=20+х, где х-скорость течения реки.
отсюда находим время. t=S/v. время= 48/(20+х)
2)рассмотрим путь ПРОТИВ течения реки:
расстояние(s)=48
скорость(v)=20-х, где х-скорость течения реки.
время=48/(20-х)
3) переведём 20 минут в обычную дробь. 20минут=1/3часа
4)сумма времён ПО и ПРОТИВ + "стоянка"= 16/3
48/(20+х)+48/(20-х)+1/3=16/3
48(20-х)+48(20+х)=5(400-х^2)
960-48х+960+48х-2000+5х^2=0
5х^2=80
х^2=16
х=+-4, но -4 не подходит по смыслу задачи, следовательно, скорость течения реки равна 4км/ч.
ОТВЕТ:4км/ч
0,36х-0,6=0,12х-0,36
0,36х-,12х=-0,36+0,6
0,24х=0,24
х=1