По определению модуля: |x+1|=x+1, при х+1≥0, т.е при x≥ - 1. Поэтому строим график g(x)=x²-3(x+1)+x на [-1;+∞), упрощаем: g(x)=x²-2x-3 на [-1;+∞). Строим часть параболы, ветви вверх, первая точка (-1;0) и далее вправо точки (0;-3) (1;-4)(2;-3)(3;0) (4;5)... Вершина в точке (1;-4)
|x+1|=-x-1 при х+1< 0, т.е при х < -1.
Поэтому строим график g(x)=x²-3(-x-1)+x на (-∞;-1), упрощаем: g(x)=x²+4x+3 на (-∞;-1). Строим часть параболы, ветви вверх, Вершина в точке (-2;-1) Парабола проходит через точки (-5; 8) (-4;3) (-3;0) (-2;-1) - вершина и направляется к точке (-1;0)
V₁ = х (км/ч) скорость велосипедиста V₂ = у (км/ч) скорость мотоциклиста S = 176 (км ) расстояние
I часть задачи: tв = 14 - 10 = 4 (ч.) время , через которое участники движения встретились V сбл. = V₁ + V₂ = S : tв (км/ч) скорость сближения ⇒ I уравнение: х + у = 176 : 4
II часть задачи : t₁= 14 - 13 = 1 (час) время в пути велосипедиста S₁ = V₁t₁ = 1 * x = x (км) расстояние, которое велосипедист проехал t₂ = 14 - 9 = 5 (часов) время в пути мотоциклиста S₂ = V₂t₂ = 5y ( км) расстояние, которое мотоциклист проехал Весь путь : S₁ + S₂ + 8 = S ( км) ⇒ II уравнение системы : х + 5у + 8 = 176
Система уравнений: { x + y = 176 : 4 ⇔ {x + y = 44 ⇔ {x = 44 - y { x + 5y + 8 = 176 ⇔ {x +5y = 176 - 8 ⇔ {x + 5y = 168 подстановки: 44 - у + 5у = 168 44 + 4у = 168 4у = 168 - 44 4у = 124 у = 124 : 4 у = 31 (км/ч) скорость мотоциклиста х = 44 - 31 = 13 (км/ч) скорость велосипедиста
Проверим: (14-10) * 13 + (14-10) *31 = 52 + 124 = 176 (км) расстояние между пунктами (14-13) * 13 + (14 - 9) * 31 = 13 + 155 = 168 (км) расстояние, которое успели проехать участники движения 176 - 168 = 8 (км) расстояние, которое осталось проехать до встречи
ответ: 13 км/ч скорость велосипедиста, 31 км/ч скорость мотоциклиста.
b^2 - 3b+9 = 0
D=9-4·9<0 ⇒ НЕТ ДЕЙСТВИТЕЛЬНЫХ РЕШЕНИЙ.