Исходная функция рассматривается лишь при икс из отрезка [-1;5]. dy/dx = 2x - 4. 2x-4 = 0, <=> x=2; 2x-4>0, <=> x>2; 2x-4<0, <=> x<2. На отрезке [-1;2] y(x) убывает. На отрезке [2;5] y(x) возрастает. Поэтому x=2 - это точка минимума. В силу непрерывности данной в условии функции она принимает все значения от y(2) до max{ y(-1); y(5) } (крайние точки включаются). y(2) = 2*2 - 4*2 - 7 = 4-8-7 = -4-7 = -11, y(-1) = 1 + 4 - 7 = 5-7 = -2; y(5) = 25 - 20 - 7 = 5-7 = -2. Область значений функции y(x) это [-11;-2].
1. A) Выразим х из первого уравнения системы и подставим во второе: х=3+у 3(3+у)+у=5 9+3у+у=5 4у=-4 у=-1 Подставим найденное значение у в выраженное нами значение х: х=3+у=3+(-1)=3-1=2
Проверим верность вычислений: 2-(-1)=2+1=3 - верно. 3*2+(-1)=6-1=5 - верно. х=2, у=-1. Б) Выразим у из первого уравнения системы и подставим во второе: у=4-х² 2*(4-х²)-х=7 8-2х²-х=7 2х²+х-1=0 Д=1+8=9 х1=(-1+3):4=1/2 х2=(-1-3):4=-1 у=4-х² При х1=1/2, у1=4-1/4=3 целых 3/4 При х2=-1, у2=4-(-1)²=4-1=3
х1=1/2, у1=3 целых 3/4; х2=-1, у2=3.
2.Подставим нашу точку (4;-2) в данные уравнения. Если в обоих уравнениях получится тождество, то эта пара чисел является решением системы, в противном случае-нет. На первом месте всегда стоит х, а на втором - у (если не оговорено в условиях другое). Подставляем: 4+(-2)=2 4-2=2 2=2 - верно
4=-2, но 4≠-2. Второе условие не соответствует - пара чисел (4;-2) - не является решением для данной системы уравнений.
Рисунок к заданию - во вложении 1. Проведем прямую через точки В и С. 2. Точку А соединим с точкой С.. 3.Вокруг отрезка [AC] нарисуем прямоугольник 1 × 2, в котором [AC] является диагональю и делит данный прямоугольник на 2 равных прямоугольныз треугольника. 4. Имеем прямоугольный треугольник с катетами длины 1 и 2 и гипотенузой [AC]. 5. По формуле Пифагора вычисляем длину гипотенузы: 1²+2²=[AC]² => [AC]²=5 => [AC]=√5 ответ:Расстояние от точки А до прямой ВС равно √5≈2.2 клетки
x∈[-1;5]
найдем координаты вершины параболы
x=2 лежит в заданном промежутке
координаты вершины (2;-11)
найдем значение на границах
область значения функции на промежутке [-1;5]
E(y) [-11;-2]