Найдём общее решение.
Выразим х.
5х = 11-3у
х = (11-3у)/5
Для того, чтобы х получился целым числом, нужно, чтобы числитель 11-3у был кратен 5. Это возможно, если он равен числу, заканчивающемуся на 0 или 5, т.е. 11-3у = m0 или 11-3у = m5, где m - старшие разряды. Тогда 3у =11- m0 = k1 или 3y =11- m5 = k6, где k - старшие разряды.
Для нахождения наименьшего целого числа, удовлетворяющего полученным условиям, нужно оставить только младший разряд, то есть разряд единиц.
3у = 1 3у = 6
у =1/ 3 у = 2
Итак, наименьшим целым числом, удовлетворяющем условию, будет 2. Следующее число, кратное 5, будет на 5 больше найденного, т.е. 2+5=7, следующее - ещё на 5 больше и т.д.
Следовательно, для у можно записать
у = 2+5·n, где n =0; 1; 2; ...; ∞
Отсюда найдём х:
х = (11-3·(2+5·n))/5 = (11-6-15·n)/5 = (5-15·n)/5 = 5·(1-3·n)/5 = 1-3·n, где n =0; 1; 2; ...; ∞
Но целые числа бывают также отрицательными. Найдём решение для отрицательных чисел.
5х = 11+3·(-у)
x = (11+3·(-у))/5
Для того, чтобы х получился целым числом, нужно, чтобы числитель 11+3·(-у) был кратен 5. Это возможно, если он равен числу, заканчивающемуся на 0 или 5, т.е. 11+3·(-у) = m0 или 11+3·(-у) = m5, где m - старшие разряды. Тогда 3·(-у) = m0-11 = k9 или 3·(-у) = m5-11 = k4, где k - старшие разряды.
Для нахождения наименьшего целого числа, удовлетворяющего полученным условиям, нужно оставить только младший разряд, то есть разряд единиц.
3·(-у) = 9 3·(-у) = 4
-y = 3 -y = 4/3
Итак, наименьшим целым числом, удовлетворяющем условию, будет 3. Следующее число, кратное 5, будет на 5 больше найденного, т.е. 3+5=8, следующее - ещё на 5 больше и т.д.
Следовательно, для у можно записать
-y = 3+5·n
y =-(3+5·n), где n = 0; 1; 2; ...; ∞
Отсюда найдём х:
х = (11+3·(3+5·n))/5 = (11+9+15·n)/5 = (20+15·n)/5 = 5·(4+3·n)/5 = 4+3·n
Итоговый ответ:
Для диапазона отрицательных чисел:
y =-(3+5·n),
где n = 0; 1; 2; ...; ∞
х =4+3·n,
Для диапазона положительных чисел:
у = 2+5·n,
где n =0; 1; 2; ...; ∞
х = 1-3·n
Сторона квадрата АВ = 8 см, ВР = ВЕ = 3 см. Поскольку КРЕМ - трапеция, то КМ параллельно РЕ, поэтому DK = DM = x.
Длина одного основания РЕ = 3*корень(2), длина другого КМ = х*корень 2, меняется от 8*корень 2 до 0.
Диагональ квадрата АС = BD = 8*корень(2).
Точки К и М в одном крайнем положении совпадают с А и С, в другом - обе совпадают с D, тогда трапеция вырождается в треугольник. Два крайних положения показаны на
Длина BN = PN = EN = 3*корень(2)/2. Длина DF = KF = MF = x*корень(2)/2. Длина OB = BD/2 = 4*корень(2)
Высота трапеции FN = BD - BN - DF = 8*корень(2) - 3*корень(2)/2 - x*корень(2)/2.
Площадь трапеции
S = (PE + KM) * FN / 2 = (3*корень(2) + х*корень(2)) * (8*корень(2) - 3*корень(2)/2 - x*корень(2)/2) / 2
S = корень(2) * (3 + x) * корень(2) * (8 - 3/2 - x/2) / 2 = (3 + x)(16 - 3 - x)/2 = (3 + x)(13 - x)/2 -> max
Неожиданно простая функция получилась. Дальше находим производную, и приравниваем к 0.
S ' = [ (13 - x) - (3 + x) ] / 2 = (10 - 2x) / 2 = 5 - x = 0
x = 5
ответ: точки К и М должны быть на расстоянии 5 см от точки D.
какие огромные числа.. навремя сократим количество нулей на пять)
Пусть президент получает 10, заместители 2, а служащие 1.
Найдем среднее арифметическое:
(10+4*2+20*1)/1+4+20=38\25=1.52
Найдем моду, но тут думаю понятно что мода это 1.
Найдем медиану, для этого выпишем все данные в порядке возрастания и попарно будем зачеркивать наибольшее число и наименьшее, тем самым подбираясь к середине.
Если в середине останется 1 число - оно и будет модой, если останется пара чисел - модой будет их среднее арифметическое.
Медиана здесь тоже равна 1.
Не забываем добавить к ответу пять нулей и получаем:
Ср.Арифметическое - 152000р
Мода - 10000р
Медиана - 10000
ответ: перепишем уравнение как y=(11-5*х)/3. Для у=2 имеем 11-5*х=6⇒х=1.
ответ: х=1, у=2.
Объяснение: