М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
shahboz3
shahboz3
23.06.2021 13:13 •  Алгебра

Выражение (2a-3b) ²-(2a+3b)² и найдите его значение, если ab=0,25

👇
Ответ:
Муликил
Муликил
23.06.2021
Решение выражения на фото снизу
Выражение (2a-3b) ²-(2a+3b)² и найдите его значение, если ab=0,25
4,6(84 оценок)
Ответ:
consenttime
consenttime
23.06.2021
4a^2-12ab+9b^2-4a^2-12ab-9b^2=-12ab-12ab 
-12*0,25-12*0,25=-3-3=-9
4,7(68 оценок)
Открыть все ответы
Ответ:
Tricjt
Tricjt
23.06.2021

Согласно теореме Безу остаток от деления полинома на двучлен равен значению полинома в корне этого двучлена,в данной задаче на полином G(x) никаких дополнительных условий не наложено,значит он может быть неприводимым над полем вещественных чисел,однако все равно раскладываться в произведение двучленов вида G(x)=(x-z)(x-\frac{ }{z})

Где \frac{ }{z} комплексно сопряжен z.

Полином G(x) примет вид G(x)=x^2+2Re(z)x+|z|

Re(z)-вещественная часть z,|z|=\sqrt{\frac{9}{4}+\frac{|9+4a|}{4}}-модуль числа z.

Очевидно,что подставляя получившиеся корни в исходный многочлен используя теорему Безу вычисление получается мягко говоря неудобным.

Аналогичная ситуация со схемой Горнера.

А вот при делении полиномов столбиком исходный многочлен представим в виде:

F(x)=G(x)(2x^2+(a-6)x-(a-3))+(-a-3)x^2+(a^2-6a+23)x-20

Очевидно,что степень остатка должна быть меньше степени делителя и мы можем остаток разделить на полином G(x),домноженный на (-a-3),тогда для того чтобы остаток от деления был равен нулю,то есть чтобы F(x) делился на G(x) должна выполняться система:

<span\left \{ {{a^2-6a+23=-3a-9} \atop {a^2+3a=-20}} \right

Которая не имеет решений ни в поле действительных,ни в поле комплексных чисел.

Значит ни при каких значениях a полином G(x) не является делителем F(x).

4,7(18 оценок)
Ответ:
Confident23
Confident23
23.06.2021

Понятно, что это квадратное уравнение. А когда квадратное уравнение будет иметь 2 различных отрицательных корня? Правильно, когда \sqrt{D}>-b, в данном случае b-коэффициент перед x.

Приступаем к решениею, приведем уравнение к приведенному(разделим на 2)

x^2+1,5x+0,5a=0

Найдём дискриминант

D=2,25-4*0,5a=2,25-2a

Т.к. в нашем уравнени b-отрицательное число (-1,5), то корню из дискриминанта достаточно принимать значения на промежутке

\sqrt{D}<1,5

Потому что, если корень из дискриминанта будет больше 1,5 , то корни получатся либо положительными, либо равными нулю, а этого нам не надо.

\sqrt{2,25-2a}<1,5

Возведем обе части в квадрат, чтобы избавиться от корня

2,25-2a<2,25

-2a<0

a>0

Значит, мы получим 2 различных отрицательных корня, если a>0.

 

 

 

4,4(65 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ