Получаем 4 неравенства: 1) |x|>0 |x-1|>0 (x-2)(x-3)<=0; x1=2; x2=3; используя метод интервалов находим: x=[2;3] 2) |x|<0 |x-1|>0 (-x-2)(x-3)<=0; x1=-2; x2=3 используем тот же метод: x=(-беск;-2] и [3;+беск) 3) |x|>0 |x-1|<0 (x-2)(-x-1)<=0; x1=2; x2=-1; методом интервалов находим: x=(-беск;-1] и [2;+беск) 4) |x|<0 |x-1|<0 (-x-2)(-x-1)<=0; x1=-2; x2=-1 используем метод интервалов: x=[-2;-1] теперь обьеденим эти множетва и получим: x=[-2;-1] и [2;3] ответ: x принадлежит [-2;-1] и [2;3]
Пусть печенья купили х кг, а конфет - у кг, тогда можно записать систему уравнений: В первом уравнении показали что сумма печенья и конфет равна 38 кг, а во втором показали что сумма стоимости конфет и стоимости печенья равна 2080 руб. (стоимость печенья 50*х, а стоимость конфет 60*у). Решаем систему уравнений, выразим х через у и подставим во второе уравнение; Нашли сколько купили конфет - 18 кг. Теперь найдём сколько купили печенья: x+18=38 x=38-18 x=20 (кг)
3у+2=2у-2+25
3у-2у=-2+25-2
у=21
21*20:100=4.2
21+4.2=25.2