1. Прямоугольник - это параллелограмм, у которого все углы прямые.
2. Диагонали прямоугольника равны. Пусть ABCD - прямоугольник. В нем проведены диагонали AC и BD. Рассмотрим ΔBAD и ΔCDA. В них: 1. ∠BAD = ∠CDA = 90 2. AB = CD (как противолежащие стороны параллелограмма) 3. AD - общий катет Получаем, что ΔBAD = ΔCDA по 2 сторонам и углу между ними. Отсюда следует, что гипотенузы этих треугольников тоже равны. А т.к. гипотенузы и есть диагонали прямоугольника, то получили AC = BD. Что и требовалось доказать
Пусть скорость реки (она же скорость плота) равна х км/ч. Тогда 36/(12-х) время в пути лодки (лодка плыла против течения реки) 36/х время в пути плота (плот плыл по течению реки) Уравнение: 36/х - 36/(12-х) =8 36/х - 36/(12-х) -8 = 0 Приводим к общему знаменателю (12-х)*х , получаем в числителе: 36(12-х)-36х-8(12х-х²)=0 При х не равном 12 и 0 получаем: 432-36х-36х-96х+8х²=0 8х²-168х+432=0 D=14400 х=3 - корень уравнения х=18 - не является корнем (т.к. 12-18= - 6 км/ч - не может быть)