Пусть катеты a и bа/b=3/4a=3b/4пусть меньший отрезок, на которые делит высота гипотенузу равен x тогда второая x+14по теореме высота h^2=x(x+14)по теореме пифагора a^2=x^2+h^2=x^2+x(x+14)=2x^2+14xснова по теореме пифагора: b^2=h^2+(x+14)^2=x(x+14)+(x+14)^2=x^2+14x+x^2+28x+196=2x^2+42x+196но так как мы сказали что a=3b/4 => a^2=9b^2/16=9(2x^2+42x+196)/169(2x^2+42x+196)/16=2x^2+14x9(2x^2+42x+196)=32x^2+224x18x^2+378x+1764=32x^2+224x-14x^2+154x+1764=014x^2-154x-1764=0x^2-11x-126=0x=18 осталось найти a и b и найти площадь
Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.
6х-5х-2=х
6х-5х-х=2
0х=2
х=2:0
х=0
Отвтет 0
3(2-х)+5х=2+6
6-3х+5х=8
-3х+5х=8-6
2х=2
х=2:2
х=1