наименьшим положительным периодом функции есть ---------------------------------- наименьший положительный период равен тогда у нас
пусть - искомый период, тогда
имеем, что
окончательно
3 перед котангенсом вытягивает график в три раза вдоль оси ОУ по отношению к графику просто котангенса не влияя на период 8-ка - сдвигает график относительно оси OX на 8 единиц вверх, также не влияя на период ----------------------------------
проанализируем какова область определения функции:
Как видим, запрещенные значения - это симметричное относительно начала координат множество точек, что означает, что и область определения функции также симметрична относительно начала координат. Это означает, что есть смысл проверять функцию на парность, дальше.
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
6х-7х=6+8
-х=14
х=(-14)
ответ: при х= (- 14)