По определению, arcsin 4/5 - это угол α, синус которого равен 4/5.
Причем, это угол, принадлежащий интервалу [- π/2; π/2].
Т.е.
arcsin 4/5 = α, sinα = 4/5, α ∈ [- π/2; π/2].
Построим этот угол на тригонометрической окружности.
Так как синус угла α - это ордината (координата у) точки, повернутой на угол α, то значение синуса 4/5 отмечаем на оси Оу.
Радиус окружности равен 1, поэтому делим его на 5 частей и отмечаем 4 из них.
Через полученную на оси Оу точку проводим горизонтальную прямую. Точка пересечения этой прямой с правой полуокружностью (с синей) и есть точка, соответствующая углу поворота α = arcsin 4/5.
21.7÷(3 7/15- 1 2/15)=21.7÷(52/15 - 17/15)= 217/10÷35/15= 217/10×15/35= 3255/350 = 9 105/350= 9 21/70= 9 3/10