М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Сколько будет корень из 8 и корень из 6

👇
Ответ:
3456789012345678905
3456789012345678905
18.09.2022
ответ будет такой как сказал мне учитель √4. √3
4,5(98 оценок)
Открыть все ответы
Ответ:
рогозина
рогозина
18.09.2022

Выражение: 51*cos(4)/sin(86)+8

ответ: 51*cos(4)/sin(86)+8

По шагам:
1. 51*0.997564050259824/sin(86)+8
1.1. cos(4)=0.997564050259824
2. 50.875766563251/sin(86)+8
2.1. 51*0.997564050259824~~50.875766563251
X0.997564050259824
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _5_1_ _
0997564050259824
4_9_8_7_8_2_0_2_5_1_2_9_9_1_2_0_ _ _
50.875766563251024
3. 50.875766563251/0.997564050259824+8
3.1. sin(86)=0.997564050259824
4. 51+8
4.1. 50.875766563251/0.997564050259824~~51
50.875766563251000|0_._9_9_7_5_6_4_0_5_0_2_5_9_8_2_4_ _
4_9_8_7_8_2_0_2_5_1_2_9_9_1_2_0_ |50.9
9975640502598000
8_9_7_8_0_7_6_4_5_2_3_3_8_4_1_6_
997564050259584
5. 59
5.1. 51+8=59
 

4,7(44 оценок)
Ответ:
BrainSto
BrainSto
18.09.2022
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ