Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:
1/х+1/у=1/6
3х/5+2у/5=12
Выделим х во втором уравнении:
3х/5+2у/5=12
15х+10у=300
3х+2у=60
х=(60-2у)/3
Подставим значение х в первое уравнение:
3/(60-3у)+1/у=1/6
18у+360-12у=60у-2у²
2у²-54у+360=0
у²-27у+180=0
D=9
у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.
у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.
х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.
ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.
Минутная стрелка проходит 360° за 60 минут, поэтому ее скорость 360/60=6 градусов в минуту. Угол между стрелками всегда от 0 до 180°. За 25 минут часовая поворачивается на 25*0,5=12,5°, а минутная на 25*6=150°. Пусть изначально между стрелками был угол х. Возможны две ситуации:
1) Изначально часовая стрелка находилась до минутной. Тогда через 25 минут угол между стрелками станет х+150-12,5=х+137,5 если 0≤х<42,5 и станет 360-(х+137,5)=222,5-х, если 42,5≤х≤180. В первом случае получаем уравнение х+137,5=х, которое не имеет решений, а во втором 222,5-х=х, откуда х=111,25°.
2) Часовая стрелка находилась после минутной. Тогда через 25 минут угол между стрелками станет равным 150-х-12,5=137,5-х в случае если 0≤х<137,5 и равным х-137,5 если 137,5≤х≤180. В первом случае получим уравнение 137,5-х=х, откуда х=68,75°. Во втором случае х-137,5=х не имеет решения. Итак, ответ: это угол 111,25° или 68,75°.