решение достаточное легкое, прикрепляю фото, но еще и объясню на словах, чтобы было понятнее. На фото более краткий разбор, нужно только оформить, а этот текст просто чтобы понять что к чему и не запутаться)
Нам дан равнобедренный треугольник АВС, мы проводим высоту ВК, которая равна 67. Она отделяет два прямоугольных треугольника АВК и ВКС, тк нам нужно найти АВ, то мы будем рассматривать треугольник АВК. Угол АВК будет равен половине угла АВС, тк высота ВК делит угол В пополам. 120:2= 60. Угол ВКА равен 90 градусов, тк Вк высота. Сумма всех углов треугольника равна 180. складываем известные нам углы в треугольнике АВК, сумма которых равно 150. 180-150=30, делаем вывод что угол ВАК = 30 градусов. По свойству прямоугольного треугольника (Катет, лежащий против угла 30градусов, равен половине гипотенузы.) делаем вывод, что ВК равен половине АВ (ВК - катет, лежит напротив угла 30 гр, АВ - гипотенуза). Следовательно, гипотенуза АВ=2ВК. 67*2=134.
АВ=134.
\[\frac{sin x}{4} * \frac{cos x}{4} = 0\]
Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:
\[\frac{sin x * cos x}{16} = 0\]
Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):
\[2sin x * cos x = 0\]
По формулам тригонометрии мы знаем, что:
\[2sin x * cos x = sin 2x\]
Запишем наше красивое уравнение:
\[sin 2x = 0\]
А теперь его решим.
Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:
\[sin x = a\]
\[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[sin 2x = 0\]
Но у нас будет не просто х, а двойной:
\[2x = (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]
Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[sin 2x = 0 \]
\[2x = \pi k, k \in \mathbb{Z}\]
Чтоб найти х надо каждый член поделить на два и из этого получим следующее:
\[x = \frac{\pi k}{2}, k \in \mathbb{Z}\]
ответ: x = \frac{\pi k}{2}, k \in \mathbb{Z}
не имеет решения при b>0