а)ветви направлены в вниз так как а=-1. ;а<0
б)вершина параболы находиться ПО формуле х0=-b/2a=>-2/2•-1=1
в)а=-1;b=2. формула х=-b/2a=>-2/2•(-1)=1
г)у=-х²+2х+8
1)точки пересечения с осью координат найдем из условий х=0 =>у(0)=0+2•0+8=0 И точка (0;6)
2) пересечение с осью абсцисс-это у=0
-х²+2х+8=0 =>так как квадратное решим с дискрименантами D=b²-4ac=2²-4•-1•8=36=6² из этого найдем х1и х2=>х1=-b+√D/2a=-2+6/2•-1=-2 ; x2=-b-√D/2a=-2-6/2•-1=4. (-2;4)
e)-х²+2х+8≠0
х≠-2 ;х≠4. D(y)=(-∞;-2)u(-2;4)u(4;+∞)
ж)E(f)={11;+∞)
давайте покажу два примера:
для решения задания нам для начала нужно знать теорему Виета
она выглядит вот так:
если наше квадратное уравнение выглядит так x² + px + q = 0, то
x1 + x2 = -p
x1 · x2 = q
судя по первому примеру -1+3=2
-1*3=-3
тогда наше уравнение будет выглядеть так х^2+2x-3=0
следущий пример точно также: -0,2+(-0,3)=-0,5
-0,2*(-0,3)=0,06
а уравнение-x^2-0.5x+0.06=0
Желаю удачи!