Пусть за (х) дней одна работу может выполнить Катя за (у) дней одна работу может выполнить Алиса, x < y тогда за 1 день Катя может выполнить (1/х) часть работы, за 1 день Алиса может выполнить (1/у) часть работы. (1/х) + (1/у) = 1\6 0.6*х + 0.4*у = 12 система (х+у) / (ху) = 1/6 6х + 4у = 120
6х + 6у = ху 6х = 120 - 4у
6*(120 - 4у + 6у) = (120 - 4у)*у 6*120 + 12у = 120у - 4у² у² - 27у + 180 = 0 по т.Виета корни 12 и 15 у = 12, тогда х = (120 - 48)/6 = 20-8 = 12 у = 15, тогда х = (120 - 60)/6 = 20-10 = 10 ответ: за 10 дней может напечатать курсовую Катя, т.к. она печатает быстрее Алисы.
Пусть первый рабочий изготавливал х деталей в день, тогда второй - у деталей. Получим уравнение: 4у -3х =4 9х + 14у = 638 Решим систему уравнений: умножим первое уравнение на 3 и сложим со вторым, получим: 28у=650 у= 25. найдём х из первого уравнения: 4*25 - 3х =4 -3х= -96 х= 32 Итак, первый изготавливал 32 детали а второй 25 деталей.
ответ: (9,6; 2,2)