1. Выражение 2х²у³х³ - одночлен в стандартном виде.(-)
2. Выражение, представляющее собой сумму одночленов – многочлен.(+)
3.Одночлены с одинаковой буквенной частью – подобные одночлены. (+)
4.В выражении (5х) ³ число “3” - основание. (-)
5.Квадрат двучлена (а-2в) равен а²-4ав+4в² . (+)
6.Выражение (х²-у²) представляет собой разность квадратов. (+)
7. (х³+у³)- куб суммы. (-)
8. Уравнение х² -25=0 имеет два корня 5 и -5. (+)
9.Выражение 16х4у6 -это квадрат одночлена 8х²у³. (-)
2 вариант
1.Степень одночлена 2х²у³z³ равна 18. (-)
2. Многочлен- это выражение, представляющее собой сумму одночленов. (+)
3.В выражение *+ 14в+49 , * - это в2. (+)
4.Выражение -(-5х³) 2 равно 25х6 . (-)
5.Квадрат двучлена (9а6-2в³) равен 81а12-36а6в³+4в6 . (+)
6.Выражение (х-у) ³ представляет собой куб разности. (+)
7.Уравнение в2 +81 = 0 имеет два корня. (-)
8.Выражение (х+5) ² всегда больше или равно 0. (+)
9.Выражение 16х4у12 -это четвертая степень одночлена 4ху³. (
есть только ответы на 9 вопросов)
Объяснение:
ответ:Прежде чем найдем значение данного выражения при заданном значении переменной х, у выражение, то есть раскроем скобки. Следовательно получим:
x(x + 4) - (x - 3)(x - 5) = х * х + х * 4 - (х * х - 5 * х - 3 * х - 3 * (-5)) = х^2 - 4 * х - (х ^2 - 5 * х - 3 * х + 15) = х^2 - 4 * х - (х ^2 - 8 * х + 15) = х^2 - 4 * х - х ^2 + 8 * х - 15 = х^2 - х ^2 - 4 * х + 8 * х - 15 = 0 - 4 * х + 8 * х - 15 = 4 * х - 15.
Если х = 1/6, то значение выражения 4 * х - 15 = 4 * 1/3 - 15 = 4/3 - 15 = 4/3 - 14 3/3 = 4/3 - 13 6/3 = -13 2/3.
Объяснение:
x1=-1, x2=9, x3=(5+√61)/2, x4=(5-√61)/2.