Все натуральные числа представимы в одном из видов 5k, 5k +-1, 5k + 2, тогда квадраты дают остатки 0, 1 и 4 при делении на 5. 65 делится на 5, тогда, чтобы получился полный квадрат, необходимо, чтобы 2^n давало остаток 0, 1 или 4 при делении на 5.
Вычисляем остатки от деления на 5 степеней двойки: 2^1 = 2 = 2 (mod 5) — неподходящий остаток 2^2 = 4 = 4 (mod 5) 2^3 = 8 = 3 (mod 5) — неподходящий остаток 2^4 = 16 = 1 (mod 5) 2^5 = 32 = 2 (mod 5) — такой же остаток, что и у 2^1, ...
Так как остаток при делении степени на 5 зависит только от остатка при делении на 5 предыдущей степени, то из того, что 2^1 и 2^5 дают одинаковые остатки, следует, что последовательность остатков периодична с периодом 4. Значит, так как при показателях, меньших 5, подходили только степени с чёётным показателем, то можно сделать вывод, что n чётно, n = 2m.
1) =х в квадрате + х - 7х - 7=x в кв.-6х-7 2)=2a - 4a в квадрате - 5 + 10a = 12a - 4a в квадрате - 5 3)=6a в квадрате + 3аb - 2ab - b в квадрате = 6a в квадрате + ab - b 4)=2a в квадрате - ab - a - 2ab + b в кв.+ b = 2a в кв.+b в кв. - 3ab - a + b 5)=a в кв.- 4а + 5а - 20 =а в кв.+ а - 20 6)=9х - 6х в кв.- 3 + 2х = -6х в кв. + 11х - 3 7)=3ab - 6a в кв. + b в кв.- 2ab = -6a в кв.+ b + ab 8)=2x в кв.+ ху - 3х - 2ху - у в кв. + 3у = 2х в кв. - у в кв.-ху - 3х + 3у 9)=с в кв.+2с - 7с - 14 = с в кв.- 5с - 14 10)=5с - 10с в кв. + 2 - 4с = -10с в кв.+с +2 11)=3сd - 3с в кв. - 2d в кв. + 2cd = -3c в кв. - 2d в кв. + 5 сd 12)=3a в кв. - ab+2a+3ab-b в кв.+2b=3a в кв.- b в кв.+2ab+2a+2b
Х (км/ч) - собственная скорость баржи х+5 (км/ч) - скорость баржи по течению реки х-5 (км/ч) - скорость баржи против течения реки 48 (ч) - время движения баржи по течению реки х+5 42 (ч) - время движения баржи против течения реки х-5 так как на весь путь баржа затратила 5 часов, то составим уравнение: 48 + 42 =5 х+5 х-5 х≠-5 х≠5 Общий знаменатель:(х-5)(х+5)=х²-25 48(х-5)+42(х+5)=5(х²-25) 48х-240+42х+210=5х²-125 -5х²+90х+95=0 х²-18х-19=0 Д=18²+4*19=324+76=400 х₁=18-20 = -1 - не подходит по смыслу задачи 2 х₂= 38 =19 (км/ч) - собственная скорость баржи 2 ответ: 19 км/ч
Вычисляем остатки от деления на 5 степеней двойки:
2^1 = 2 = 2 (mod 5) — неподходящий остаток
2^2 = 4 = 4 (mod 5)
2^3 = 8 = 3 (mod 5) — неподходящий остаток
2^4 = 16 = 1 (mod 5)
2^5 = 32 = 2 (mod 5) — такой же остаток, что и у 2^1,
...
Так как остаток при делении степени на 5 зависит только от остатка при делении на 5 предыдущей степени, то из того, что 2^1 и 2^5 дают одинаковые остатки, следует, что последовательность остатков периодична с периодом 4. Значит, так как при показателях, меньших 5, подходили только степени с чёётным показателем, то можно сделать вывод, что n чётно, n = 2m.
2^(2m) + 65 = k^2
k^2 - (2^m)^2 = 65
(k + 2^m)(k - 2^m) = 65
65 можно разложить на два множителя следующими Получаем два возможных варианта:
1) k + 2^m = 65, k - 2^m = 1
Вычитаем из первого уравнения второе, получаем 2 * 2^m = 64, m = 5, n = 10 (тогда 2^10 + 65 = 1089 = 33^2)
2) k + 2^m = 13, k - 2^m = 5
2 * 2^m = 8
m = 2
n = 4 (в этом случае 2^n + 65 = 81 = 9^2).
ответ. при n = 4 и n = 10.