 
                                                 
                                                
 — прямая пропорциональность.
 — прямая пропорциональность. — прямая пропорциональность, то есть доказать, что в выражении
 — прямая пропорциональность, то есть доказать, что в выражении 
 находится в первой степени (не
 находится в первой степени (не  , не
, не  , не
, не  и не
 и не  , а просто
, а просто  ).
). . Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид
. Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид  , где
, где  , и
, и  . Формула «разность квадратов» раскрывается так:
. Формула «разность квадратов» раскрывается так:  .
.
 .
. ,
,  находится в первой степени, а значит зависимость
 находится в первой степени, а значит зависимость  — есть прямая пропорциональность. Доказано.
 — есть прямая пропорциональность. Доказано.
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                
Рассмотрим функцию . Эта функция является возрастающей, как сумма двух возрастающих функций.
. Эта функция является возрастающей, как сумма двух возрастающих функций.
Теорема.
Если на некотором промежутке функция f(x) возрастает (или убывает), то уравнение f(x)=a на этом промежутке имеет единственный корень либо не имеет корней (a — число).
На рисунке видно, что графики пересекаются в одной точке, и при этом корень приближенный, трудно будет решить в стандартных решениях: