Графиком функции является парабола, ветви которой направлены вверх, т. к. коэффициент при x^2 положителен. найдём вершину параболы: тогда . вершина параболы (2; -1). для удобства построения графика выделим полный квадрат: . график прикреплён в файле. опишем свойства: 1) область определения 2) область значений 3) функция убывает на и возрастает на 4) функция ограничена снизу и не ограничена сверху. не помню все свойства. если надо напишу
Можно решить путем составления системы уравнений. обозначим через х - число деталей в день 1 рабочего, а через у - количество дней. тогда для второго рабочего это будет х+5 и у-1 составим систему { ху=100 (х+5)(у-1)=100 преобразуя эту систему, получим у=(х+5)/5. далее в выражение ху=100 подставим значение у. получим квадратное уравнение x^2+5x-500=0. корнями этого уравнения будут х1=-25, х2=20. выбираем 20. столько изготавливает в день первый рабочий.
log(2)(2x-1)-2=log(2)(x+2)-log(2)(x+1)
{2x-1>0⇒2x>1⇒x>0,5
{x+2>0⇒x>-2
{x+1>0⇒x>-1
x∈(0,5;∞)
log(2)[(2x-1)/4]=log(2)[(x+2)/(x+1)]
(2x-1)/4=(x+2)/(x+1)
(2x-1)(x+2)=4(x+1)
2x²+4x-x-2-4x-4=0
2x²-x-6=0
D=1+48=49
x1=(1-7)/4=-1,5 не удов усл
x2=(1+7)/4=2
2
{x-2>0⇒x>2
{x-8>0⇒x>8
{log(4)[(x-2)(x-8)]<2⇒(x-2)(x-8)<16
x²-8x-2x+16-16<0
x²-10x<0
x(x-10)<0
x=0 x=10
+ _ +
(0)(2)(8)(10)
x∈(8;10)