М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
женя1084
женя1084
20.10.2020 01:02 •  Алгебра

Упростите выражение n^2-1/n+m : n-1/n * 3n-3m/n^2+n Найдите значение выражение при

👇
Открыть все ответы
Ответ:
urukhaiz
urukhaiz
20.10.2020
a-x^2 \geq |sinx|

График  y=|sinx|  расположен выше оси ОХ.
Точки пересечения с осью ОХ:  x=\pi n\; ,\; n\in Z .
Графики функций  y=a-x^2 - это параболы , ветви
которых направлены вниз, а вершины в точках (0, а).
При х=0  sin0=0 и точка (0,0) является точкой пересечения 
графика у=|sinx| и оси ОУ, на которой находятся вершины парабол.
При а=0 графики y=|sinx| и y=x² имеют одну точку пересе-
чения - (0,0), при а<0  точек пересе-
чения вообще нет. А при а>0 будет всегда 2 точки пересе-
чения этих графиков и соответственно, будет выполняться
заданное неравенство.
То есть одна точка пересечения при а=0.
ответ:  а=0.
При каком значении параметра а неравенство а-x^2больше или равно|sinx| имеет единственное решение? н
4,5(7 оценок)
Ответ:
nikitasolyny
nikitasolyny
20.10.2020
Арксинус, arcsin

Арксинус ( y = arcsin x )  – это функция, обратная к синусу ( x = sin y ). Он имеет область определения    и множество значений  .
sin(arcsin x) = x     
arcsin(sin x) = x     

Арксинус иногда обозначают так:
.

График функции арксинус 
График функции   y = arcsin x

График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арксинуса.

Арккосинус, arccos

Арккосинус ( y = arccos x )  – это функция, обратная к косинусу ( x = cos y ). Он имеет область определения    и множество значений  .
cos(arccos x) = x     
arccos(cos x) = x     

Арккосинус иногда обозначают так:
.

График функции арккосинус 
График функции   y = arccos x

График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом   , на котором функция монотонна. Такое определение называют главным значением арккосинуса.

Четность

Функция арксинус является нечетной:
arcsin(–x) = arcsin(–sin arcsin x) = arcsin(sin(–arcsin x)) = – arcsin x

Функция арккосинус не является четной или нечетной:
arccos(–x) = arccos(–cos arccos x) = arccos(cos(π–arccos x)) = π – arccos x ≠ ± arccos x

Свойства - экстремумы, возрастание, убывание

Основные свойства арксинуса и арккосинуса представлены в таблице.

 y = arcsin xy = arccos xОбласть определения– 1 ≤ x ≤ 1– 1 ≤ x ≤ 1Область значений  Возрастание, убываниемонотонно возрастаетмонотонно убываетМаксимумы    Минимумы    Нули, y = 0x = 0x = 1Точки пересечения с осью ординат, x = 0y = 0y = π/2Таблица арксинусов и арккосинусов

В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.

 xarcsin xarccos xград.рад.град.рад.– 1– 90°– 180°π– – 60°– 150°– – 45°– 135°– – 30°– 120°00°090°30°60°45°45°60°30°190°0°0

 ≈ 0,7071067811865476
 ≈ 0,8660254037844386

ФормулыСм. также:
Вывод формул обратных тригонометрических функций

 
 
 

Формулы суммы и разности

  
     при или 
 
     при и 
  
     при и

  
     при или 
 
     при и 
 
     при и

  
     при  
  
     при 

  
     при  
  
     при 

Выражения через логарифмы, комплексные числаСм. также:
Вывод формул



Выражения через гиперболические функции



Производные

;
.
См. Вывод производных арксинуса и арккосинуса > > >

Производные высших порядков:
,
где  – многочлен степени . Он определяется по формулам:
;
;
.

См. Вывод производных высших порядков арксинуса и арккосинуса > > >

Интегралы

Делаем подстановку   x = sin t   и интегрируем по частям: 
  .

Выразим арккосинус через арксинус: 
  .

Разложения в ряды

При   |x| < 1   имеет место следующее разложение:
 ; 
.

Обратные функции

Обратными к арксинусу и арккосинусу являются синус и косинус, соответственно.

Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x      
cos(arccos x) = x    .

Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса: 
arcsin(sin x) = x     при  
arccos(cos x) = x     при .

4,7(23 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ