Объяснение:
(0;5), (10;2), (3;-6), (-4;-5), (2;9)
В каждой паре на первом месте стоит значение х ,а на втором - у.
При х=0,у=5 2x-4y=12 2*0-4*5≠12 Значит пара (0;5) не является решением уравнения.
При х=10,у=2 2*10-4*2=12 Значит пара (10;2) является решением уравнения.
При х=3,у= -6 2*3-4*(-6)≠12 Значит пара (3;-6) не является решением уравнения.
При х= -4,у= -5 2*(-4)-4*(-5)=12 Значит пара (-4;-5) является решением уравнения.
При х=2,у=9 2*2-4*9≠12 Значит пара (2;9) не является решением уравнения.
Даны точки М1 (2,4,-1) и М2(6,1,5)
Спроецируем их на плоскость ХОZ и получим прямую АВ.
Это будет след заданной плоскости, параллельной оси Оу.
Уравнение АВ по двум точкам с учётом, что у = 0: (x - 2)/4 = (z+ 1)/6 или в общем виде 3x - 2z - 8 = 0.
Находим отрезки на осях координат, отсекаемые искомой плоскостью.
Возьмём точку В на прямой АВ. Она пересекает Оz на расстоянии, получаемом из подобия треугольников.
(2/(6 - 2) = Δz/(5 - (-1)),
2/4 = Δz/6, Δz = 2*6/4 = 3. Так как точка пересечения с осью Oz лежит ниже точки В, то приращение Δz отрицательно.
z = -1 - 3 = -4.
На оси Ох аналогично: Δх/-4 = 2/-3, отсюда Δх = 2*(-4)/(-3) = 8/3.
Если плоскость пересекает оси OX, OY и OZ в точках с координатами (a, 0, 0), (0, b, 0) и (0, 0, с), то она может быть найдена, используя формулу уравнения плоскости в отрезках:
(x/a) + (y/b) + (z/c) = 1.
Ось ОУ не пересекается, то есть b=0 и это слагаемое отсутствует.
Подставим значения отрезков в уравнение:
(x/(8/3) + (z/(-4)) = 1.
После преобразования получим уравнение плоскости:
3x - 2z - 8 = 0.