М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gilsveta4
gilsveta4
30.07.2021 02:19 •  Алгебра

Решить уравнения: 1) (x^2-4)*корень из х+5=0

👇
Ответ:
11041980
11041980
30.07.2021
ОДЗ x+5≥0⇒x≥-5
x²-4=0
x²=4
x=-2
x=2
x+5=0
x=-5
ответ x={-5;-2;2}
4,8(10 оценок)
Открыть все ответы
Ответ:
lena101992
lena101992
30.07.2021

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

4,4(66 оценок)
Ответ:
жепа564
жепа564
30.07.2021

Число делится на 10 только в том случае, если оно оканчивается цифрой 0.

Посмотрим, какой цифрой оканчивается каждое слагаемое.

1) число 7 в разных степенях оканчивается разными цифрами. Попробуем установить закономерность.

7^1=7,\\7^2=49,\\7^3=343,\\7^4=2401,\\7^5=16807,...

Т.е. последние цифры записи степеней семерки чередуются так: 7 - 9 - 3 - 1 и по кругу.

Т.к. 7^4 оканчивается цифрой 1, то 7^{2016} также оканчивается цифрой 1. Тогда число 7^{2017} оканчивается цифрой 7.

2) Для степеней четверки закономерность проще - 4 - 6 и по кругу:

4^1=4,\\4^2=16,\\4^3=64,\\4^4=256,...

Поскольку 4^2 оканчивается цифрой 6, то  4^{2018} также оканчивается цифрой 6.

3) Закономерность для степеней тройки - 3 - 9 - 7 - 1 и по кругу:

3^1=3,\\3^2=9,\\3^3=27,\\3^4=81,\\3^5=243,...

Т.к. 3^3 оканчивается цифрой 7, то 3^{2019} также оканчивается цифрой 7.

В итоге слагаемые 7^{2017}, 4^{2018}, 3^{2019} оканчиваются цифрами 7, 6 и 7 соответственно. Если их сложить, то в разрядке единиц класса единиц получим 0. Т.е. число 7^{2017}+4^{2018}+3^{2019} оканчивается цифрой 0 - следовательно, оно таки делится на 10.

ОТВЕТ: да.

4,5(45 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ