ответ:
y' = 4x^3-4x
приравниваем ее к нулю:
4x^3-4x = 0
x1 = 0
x2 = -1
x3 = 1
вычисляем значения функции
f(0) = 8
f(-1) = 7
f(1) = 7
fmin = 7, fmax = 8
используем достаточное условие экстремума функции одной переменной. найдем вторую производную:
y'' = 12x^2-4
вычисляем:
y''(0) = -4< 0 - значит точка x = 0 точка максимума функции.
y''(-1) = 8> 0 - значит точка x = -1 точка минимума функции.
y''(1) = 8> 0 - значит точка x = 1 точка минимума функции.
объяснение:
y=-1,5x² на отрезке [-4;-2]
y = -1,5 x² - квадратичная функция, график - парабола, ветви направлены вниз (a=-1,5 < 0). Максимальное значение принимает в точке вершины параболы.
x₀ = 0; y₀ = 0 - координаты вершины параболы из уравнения функции.
x₀ ∉ [-4; -2] ⇒ наибольшее и наименьшее значения функции на границах отрезка.
x₁ = -4; y₁ = -1,5 x² = -1,5 · (-4)² = -1,5 · 16 = -24
x₂ = -2; y₂ = -1,5 x² = -1,5 · (-2)² = -1,5 · 4 = -6
ответ : наибольшее значение y = -6;
наименьшее значение y = -24
х + у = 7
Сложим их (х с х и у с у): 2х = 12, откуда х = 6, тогда подставив вместо х число 6 найдем, что у = 1.
ответ: (6; 1).