М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
eryana
eryana
20.02.2020 01:27 •  Алгебра

На вечере встречи 25 выпускников обменялись . сколько всего было сделано? на том же вечере они решили обменяться фотокарточками. сколько всего фотографий будет заказано?

👇
Ответ:
Кеса1188
Кеса1188
20.02.2020
N(n-1)/2 - количество рукопожатий

n=25 - количество выпускников
25*(25-1)/2= 25*24/2= 300 - количество рукопожатий

25*24 = 600 (шт.) - количество заказанных фотографий

Пояснение: 
Каждый из 25 выпускников руку 24-м  остальным выпускникам. Но, произведение 25*24 = 600 даст нам  удвоенное число рукопожатий (т.к. первый руку второму, а затем второй первому, на самом же деле это  одно рукопожатие). Поэтому полученный результат делим на 2 и получаем ответ. 
4,8(95 оценок)
Ответ:
соня1583
соня1583
20.02.2020
24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. Все это сложить, для обоих случаев. Это будет равно 300.
Так же можно написать 25 умножить на 12
4,5(33 оценок)
Открыть все ответы
Ответ:
Fansik34324
Fansik34324
20.02.2020
Решим более глобальную задачу: А именно: научимся решать все похожие примеры, а для этого решим две аналогичные задачи:

*** Аналог задачи 1)

x^2 + \frac{81}{x^2} = 9 ( \frac{x^2}{9} + \frac{9}{x^2}) = 9 ( ( \frac{x}{3} )^2 - 2 + ( \frac{3}{x} )^2 + 2 ) =

= 9 ( ( \frac{x}{3} )^2 - 2 \frac{x}{3} \frac{3}{x} + ( \frac{3}{x} )^2 ) + 18 = 9 ( \frac{x}{3} - \frac{3}{x} )^2 + 18 \geq 18 ;

Причём значение 18 достигается выражением при x = 3, как можно легко видеть из формы последнего преобразования, и что можно вычислить, подставив x = 3 в исходное выражение.

*** Аналог задачи 2)

x + \frac{25}{x} = 5 ( \frac{x}{5} + \frac{5}{x} ) = 5 ( ( \sqrt{ \frac{x}{5} } )^2 + ( \sqrt{ \frac{5}{x} } )^2 ) = 5 ( ( \sqrt{ \frac{x}{5} } )^2 - 2 + ( \sqrt{ \frac{5}{x} } )^2 + 2 ) =

= 5 ( ( \sqrt{ \frac{x}{5} } )^2 - 2 \sqrt{ \frac{x}{5} } \sqrt{ \frac{5}{x} } + ( \sqrt{ \frac{5}{x} } )^2 ) + 10 = 5 ( \sqrt{ \frac{x}{5} } - \sqrt{ \frac{5}{x} } )^2 + 10 \geq 10

Причём значение 10 достигается выражением при x = 5, как можно легко видеть из формы последнего преобразования, и что можно вычислить, подставив x = 5 в исходное выражение.

Если же задачи предполагается решать при производных, то решим и таким

*** Аналог задачи 1) /// через производную ///

Рассмотрим функцмю f(x) = x^2 + \frac{81}{x^2} ;

Её производная: f'(x) = ( x^2 + 81x^{-2} )' = 2x - 2*81x^{-3} =

= \frac{2x^4}{x^3} - \frac{162}{x^3} = \frac{2}{x^3} ( x^4 - 81 ) = \frac{ 2 ( x^2 + 9 ) }{x^3} ( x^2 - 9 ) ;

f'(x) = \frac{ 2 ( x^2 + 9 ) }{x^3} ( x + 3 ) ( x - 3 ) ;

Производная обнуляется и меняет знак на положительной полуоси только при x = 3 , причем при x > 3 : : : f'(x) > 0 , а значит после стационарной точки функция растёт, т.е. при x = 3 достигается минимум на положительных числах.

Минимум выражения, это f(3) = 3^2 + \frac{81}{3^2} = 18 ;

*** Аналог задачи 2) /// через производную ///

Рассмотрим функцмю f(x) = x + \frac{25}{x} ;

Её производная:

f'(x) = ( 1 + 25x^{-1} )' = 1 - 25x^{-2} = \frac{x^2}{x^2} - \frac{25}{x^2} = \frac{ x^2 - 25 }{x^2} ;

f'(x) = \frac{ x + 5 }{x^2} ( x - 5 ) ;

Производная обнуляется и меняет знак на положительной полуоси только при x = 5 , причем при x > 5 : : : f'(x) > 0 , а значит после стационарной точки функция растёт, т.е. при x = 5 достигается минимум на положительных числах.

Минимум выражения, это f(5) = 5 + \frac{25}{5} = 10 ;

В вашем случае сумма решения обоих примеров будеи равна количеству месяцев в году.
4,4(9 оценок)
Ответ:
марьяша18
марьяша18
20.02.2020

Необходимо доказать, что:

(x+3)*(x+6)*(x+2)*(x+1)>96*x^2

При условии: x>0

Умножим первую скобку на третью, а вторую на четвёртую:

(x^2+5x+6)*(x^2+7x+6)>96*x^2

Поделим обе части неравенства на x^2 , причём каждую из полученных скобок поделим почленно на x. Поскольку x^2>0 , то неравенство не меняет знак.

Имеем:

(x+ 5+ 6/x)*(x + 7 +6/x)>96

Сделаем замену : x+6+6/x=t

(t-1)*(t+1)>96

t^2-1>96

t^2>97

Необходимо доказать , что t^2>97

Поскольку x>0 , то можно применить неравенство о среднем арифметическом и среднем геометрическом:

x+ 6/x >= 2*sqrt(x *6/x)=2*sqrt(6)

Откуда:

t= x+6 +6/x>= 6+2sqrt(6)

t^2>=(6+ 2sqrt(6) )^2=36+24+24*sqrt(6)

=60+24*sqrt(6)>60+24*sqrt(4)=

=60+48=108>97

Таким образом мы показали что:

t^2>97, а значит мы доказали , что неравенство:

(x+3)*(x+6)*(x+2)*(x+1)>96*x^2 выполняется при любом x.

Что и требовалось доказать.

Более того , мы может даже усилить данное неравенство , сделав его строгим и найти наибольшее целое число , что может усилить данное неравенство.

t^2-1>= (6+ 2sqrt(6) )^2-1=59+24sqrt(6)

(x+3)*(x+6)*(x+2)*(x+1)>=(59+24sqrt(6))*x^2

24*sqrt(6)=sqrt(24^2 *6)=sqrt(3456)

sqrt(3364) <sqrt(3456) < sqrt(3481)

58 <24*sqrt(6)<59

59+24sqrt(6) >59+58=117

Наибольшее усиление для сравнения с целым числом:

(x+3)*(x+6)*(x+2)*(x+1)>117*x^2

4,7(73 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ