) Будем смотреть по четвертям: в 1-й четверти и синус, и тангенс положительны. но при одинаковых углах синус меньше, чем тангенс ( смотри на ед окружности) во 2- й четверти синус положителен, а тангенс с минусом ( наше неравенство выполняется) Значит, ответ: (π/2; π) в 3-й четверти синус с минусом, а тангенс с плюсом ( не подходит) в 4-й четверти снова синус положителен, а тангенс отрицателен. (наше неравенство выполняется)значит, ответ: (3π/2; 2π) 2) Решаем как квадратное: D = 1 -4*4*(-5) = 81 а) Cosx = (-1 +9)/8 = 1, x = 2πk, k ∈Z б) Cosx = (-1 -9)/8 =-5/4 нет решения 3) arcSin(Sin5) = 5
Y = 5*x-sin(2*x) 1. Находим интервалы возрастания и убывания. Первая производная равна:. f'(x) = -2cos(2x)+5 Находим нули функции. Для этого приравниваем производную к нулю -2cos(2x)+5 = 0 Для данного уравнения корней нет. 2. Находим интервалы выпуклости и вогнутости функции. Вторая производная равна: f''(x) = 4sin(2x) Находим корни уравнения. Для этого полученную функцию приравняем к нулю. 4sin(2x) = 0 Откуда точки перегиба: x1 = 0 На интервале (-∞ ;0) f''(x) < 0, функция выпукла На интервале (0; +∞) f''(x) > 0, функция вогнута
нет такого "a"
ответ: a∈∅