Если m - отрицательное, то и 2m - отрицательное число. Так как при удвоении знак (плюс или минус) числа не меняется. Например пусть m=-15, тогда 2m=-30
{a1+ a6=11 a2+a4=10 Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d) a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему: {a1+a1+5d=11 a1+d+a1+3d=10 {2a1+5d=11 2a1+4d=10 Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым: {-2a1-5d=-11 + 2a1+4d=10 -d=-1 d=1 2a1+4=10 a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.) По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии: S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n) ответ:33
Интересная логическая задача. Известно: 1,4,5 - кедр, 2,3 - сандал. На шкатулках из кедра и сандала одинаковое количество ложных утверждений: 1 или 2. Надписи: На 1: 1 или 4. На 2: 1. На 3: 3 или 5. На 4: НЕ в 1, НЕ во 2 и НЕ в 3. На 5: На всех остальных ложь. На 5 написано, что на остальных ложь, поэтому на всех правды быть не может. 1) По 1 ложному утверждению. Тогда ложь на 5 шкатулке из кедра. На 1 и 4 правда. Если ложь на 2 шкатулке из сандала, то на 3 правда, но 1 и 3 противоречат друг другу. Если ложь на 3 шкатулке, то на 2 правда, но тогда 2 и 4 противоречат друг другу. Таким образом, по 1 ложному высказыванию быть не может. 2) По 2 ложных утверждения. Очевидно, что это 1,2,3,4 шкатулки, а на 5 правда. В этом случае есть единственное решение: клад во 2 шкатулке. 1) Не в 1 и не в 4. 2) Не в 1. 3) Не в 3 и не в 5. 4) В одной из шкатулок левее 4 клад есть ответ: клад во 2 шкатулке.
Так как при удвоении знак (плюс или минус) числа не меняется.
Например пусть m=-15, тогда 2m=-30