пусть за хч-первая наполнит,а х+6 ч-наполнит вторая труба.
1/х-производительность первой трубы в 1час,а 1/(х+6) -производительность второй.
а 1/4 ч общая производительность за 1час.
Составим уравнение:
1/х+1/(х+6)=1/4 - приводим к общему знаменателю-4*х*(х+6)
4х+4х+24=х²+6х
х²-2х-24=0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-2)²-4*1*(-24)=4+96=√100=10;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(10+2)/2=12/2=6;
x₂=(-10+2)/2=-8/2=-4 - этот ответ не подходит,т.к. время не может быть отрицательное.
Значит
первая труба в отдельности может наполнить бассейн за 6ч,а вторая 6+6=за 12часов.
Задача : Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.
Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи:
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр).
3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).
Всего получаем P=1/10+1/10+1/10=3/10=0,3P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.
ответ: 0,3
Построим через простейшие преобразования графиков.
Смотри в приложении.