М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
naragagik2001
naragagik2001
25.10.2021 07:02 •  Алгебра

Вычислить предел lim x-3 4x^2-9x-9/x^3-27

👇
Ответ:
vadimkolknev
vadimkolknev
25.10.2021
\lim_{x \to 3} \frac{4x^2-9x-9}{x^3-27}= \lim_{x \to 3} \frac{(4x+3)(x-3)}{(x-3)(x^2+3x+9)} = \lim_{x \to 3} \frac{4x+3}{x^2+3x+9}= \frac{4*3+3}{3^2+3x+9}
= \frac{15}{27}= \frac{5}{9}
В числителе квадратный трёхчлен 4x²-9x-9 разложен на множители:
4x²-9x-9=(*)
D=(-9)²-4*4*(-9)=81+144=225=15²
x=(9-15)/(2*4)=-6/8=-3/4
x=(9+15)/(2*4)=24/8=3
(*)=4(x+(3/4))(x-3)=(4x+3)(x-3)
А знаменатель разложен на множители по формуле разности кубов:
x³-27=x³-3³=(x-3)(x²+3x+9)
4,6(18 оценок)
Открыть все ответы
Ответ:
прог13
прог13
25.10.2021

Парабола: определение, свойства, построение

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением

y2=2px  

при условии p>0.

Из уравнения (1) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции y=ax2. Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством 2p=a−1.

Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат.

Директрисой параболы называется прямая с уравнением x=−p/2 в канонической системе координат

Утверждение.

Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно

r=x+p2

Доказательство.

Вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек: r2=(x−p/2)2+y2 и подставим сюда y2 из канонического уравнения параболы. Мы получаем

r2=(x−p2)2+2px=(x+p2)2.

Отсюда в силу x≥0 следует равенство

4,4(20 оценок)
Ответ:
Nastena11102003
Nastena11102003
25.10.2021

Парабола: определение, свойства, построение

Параболой называется линия, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением

y2=2px  

при условии p>0.

Из уравнения (1) вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы.

Форма параболы известна из курса средней школы, где она встречается в качестве графика функции y=ax2. Отличие уравнений объясняется тем, что в канонической системе координат по сравнению с прежней оси координат поменялись местами, а коэффициенты связаны равенством 2p=a−1.

Фокусом параболы называется точка F с координатами (p/2,0) в канонической системе координат.

Директрисой параболы называется прямая с уравнением x=−p/2 в канонической системе координат

Утверждение.

Расстояние от точки M(x,y), лежащей на параболе, до фокуса равно

r=x+p2

Доказательство.

Вычислим квадрат расстояния от точки M(x,y) до фокуса по координатам этих точек: r2=(x−p/2)2+y2 и подставим сюда y2 из канонического уравнения параболы. Мы получаем

r2=(x−p2)2+2px=(x+p2)2.

Отсюда в силу x≥0 следует равенство

4,7(97 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ