Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.
Формула
d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.
Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.
Дифференцируем
Для упрощения производной запишем х^х как e^( ln(x^x) ).
И опять сложная функция.
Дифференцируем её аналогично:
f(x) = e^x, g(x) = xln(x)
Заменим xln(x) перевенной k:
За правилом производной произведения имеем:
Вычисляем все производные и получаем:
Это и есть ответ.
Мы видим, что данная функция является сложной, поэтому будем её дифференцировать как сложную.
Формула
d/dx( f(g(x)) ) = f'(g(x)) × g'(x), где в нашем случае f(x) = cos(x), а g(x) = x^x.
Для применения правила дифференцирования сложной функции, заменим x^x новой переменной t.
Дифференцируем
Для упрощения производной запишем х^х как e^( ln(x^x) ).
И опять сложная функция.
Дифференцируем её аналогично:
f(x) = e^x, g(x) = xln(x)
Заменим xln(x) перевенной k:
За правилом производной произведения имеем:
Вычисляем все производные и получаем:
Это и есть ответ.
6x^2 - 3x = 0 /:3
2x^2 - x = 0
x(2x - 1) = 0
x = 0 ;
2x - 1 = 0 ==> 2x= 1 ==> x = 0,5
б) x^2 - 36 = 0
x^2 = 36
x = ± √36
x = ± 6
в) 5x^2 + 1 = 0
5x^2 = - 1
x^2 = - 0,2
нет решений