Объяснение:
ДУМАЕМ Площадь фигуры - интеграл разности функций.
Рисунок к задаче в приложении.
РЕШЕНИЕ
1) Находим точки пересечение = пределы интегрирования.
x² - 4*x + 1 = x + 1 превращается в квадратное уравнение:
x²- 5*x = x*(x - 5) = 0
b= 0 - нижний предел и а = 5 - верхний передел интегрирования.
Находим интеграл разности функций: s = 5*x - x² - прямая выше параболы.
S=
Мне нравится именно такая запись решения интеграла - увеличиваем степень и на неё же и делим.
Вычисляем на границах интегрирования.
S(5) = 62 1/2 - 41 2/3 = 20 5/6, S(0) = 0.
S = S(5) - S(0) = 20 5/6 - площадь фигуры - ОТВЕТ (≈ 20,833)
Дано: АВСД - трапеция, АВ=СД, АД=20√3, ∠А=∠Д=60°, АС⊥СД. Найти S(АВСД).
Решение: Проведем высоту СН, тогда S(АВСД)=(ВС+АД):2*СН.
Рассмотрим ΔАСД - прямоугольный, ∠Д=60°, тогда ∠САД=90-60=30°, а СД=1\2 АД=20√3:2=10√3.
Диагональ АС перпендикулярна к боковой стороне и делит угол А пополам, значит большее основание трапеции в два раза больше меньшего основания и её боковых сторон; и высота трапеции равна половине её диагонали.
СД=ВС=20√3:2=10√3;
АС²=(20√3)²-(10√3)²=1200-300=900; АС=√900=30.
СН=1\2 АС=30:2=15.
S(АВСД)=(20√3+10√3):2*15=225√3 (ед²).
ответ: 225√3 ед²
{x²+2y²=3
Решаем первое уравнение.
Это однородное уравнение второй степени.
Делим на y².
Замена переменной
х/у=t,
t²-2t-3=0
D=4+12=16
t=-1 или t=3
x=-y или х=3у
Совокупность двух систем
{x=-y
{x²+2y²=3
{x=3y
{x²+2y²=3
Решаем каждую систему подстановки
{x=-y {x=1 {x=-1
{(-у)²+2y²=3 ⇒ у²=1 ⇒ {у=-1 или у=1
{x=3y {x=3·√(3/11) {x=-3·√(3/11)
{(3у)²+2y²=3 ⇒ 11у²=3⇒ {y=√(3/11) или {у=-√(3/11)
О т в е т. (1;-1) (-1;1) (3√(3/11) ;√(3/11) ) (-3√(3/11) ; -√(3/11) )
См. графическое решение в приложении.
И второй
x²-2ху-3у²=0
х²-2ху+у²-4у²=0
(х-у)²-(2у)²=0
(х-у-2у)·(х-у+2у)=0
(х-3у)·(х+у)=0
Та же совокупность двух систем
{x-3y=0
{x²+2y²=3
{x+y=0
{x²+2y²=3