Объяснение:
((a+7)\(a-7)-(a-7)\(a+7))\(14\(a^2-7a))
Приведем дроби в скобке к общему знаменателю a^2-49, домножив первую дробь на (a+7), а вторую на (a-7):
((a+7)^2-(a-7)^2)\(a^2-49)
По формуле разности квадратов:
((a+7-a+7)(a+7+a-7))\(a^2-49)
14*2a\a^2-49
28a\a^2-49
Представим деление одной дроби на другую умножением первой на перевернутую вторую:
(28a*(a^2-7a))\(14*(a^-49))
Вынесем в числителе "а" за скобку, а в знаменателе разложим скобку на множители:
(28a^2*(a-7))\(14(a-7)(a+7))
Сократим дробь:
2a^2\(x+7)
Дано:
S=132 км
S(плота)=60 км
v(теч.)=v(плота)=5 км/час
Найти:
v(собств. лодки)=? км/час
РЕШЕНИЕ
1) Скорость плота равна скорости течения реки v(плота)=v(теч.)=5 км/час. К тому времени, когда лодка вернулась на пристань А, плот был в пути: t(время)=S(расстояние)÷v(скорость)=60÷5=12 (часов).
2) Лодка отправилась на 1 час позже, значит она была в пути 12-1=11 часов. Лодка проплыла между пристанями А и В 132 км, и вернулась обратно от пристани В к А, проплыв ещё 132 км.
Пуст х - собственная скорость лодки. По течению моторная лодка плыла со скоростью:
v(по теч.)=v(собств.) + v(теч.)=х+5 км/час
Против течения моторная лодка плыла со скоростью:
v(пр. теч.)=v(собств.) - v(теч.)=х-5 км/час
Время в пути по течению равно: t(по теч.) =S÷v(по теч.)=132/(х+5) часа
Время в пути против течения равно: t(пр. теч.) =S÷v(пр. теч.)=132/(х-5) часа.
Всего на путь туда и обратно ушло 11 часов.
Составим и решим уравнение:
132/(х+5)+132/(х-5)=11 (умножим на (х-5)(х+5), чтобы избавиться от дробей)
132×(х-5)(х+5)/(х+5) + 132×(х+5)(х-5)/(х-5)=11(х+5)(х-5)
132(х-5) + 132(х+5)=11(х²-25)
132х-660+132х+660=11х²-275
264х=11х²-275
11х²-264х-275=0
D=b²-4ac=(-264)²+4×11×(-275)=69696+12100=81796 (√D=286)
х₁=(-b+√D)/2a=(-(-264)+286)/2×11=550/22=25 (км/час)
х₂=(-b-√D)/2a=(-(-264) -286)/2×11=-22/22=-1 (х₂<0 - не подходит)
ОТВЕТ: скорость лодки в неподвижной воде (собственная скорость) равна 25 км/час.
x=корень +- 21
x=+ - 3