1.
(x+7)(x-2)=x² - 2x+7x - 14=x²+5x-14
(y+5)(y²-3y+8)=y³-3y²+8y+5y²-15y+40=y³+2y² - 7y+40
(4c-d)(6c+3d)=24c²+12cd-6cd-3d²=24c²+6cd-3d²
2.
y(a-b)+2(a-b)=(a-b)(y+2)
3x-3y+ax-ay=3(x-y)+a(x-y)=(x-y)(3+a)
3.
xy(x+y)-(x²+y²)(x-2y)=x²y+xy² - (x³-2x²y+xy²-2y³)=x²y+xy²- x³+2x²y-xy²+2y³=2y³+3x²y - x³
4.
a(a-2)-8=(a+2)(a-4)
a²-2a-8=a²-2a-8
0=0 - верно
5.
х дм - ширина прямоугольника
х+12 (дм) - длина
х+12+3 (дм) - увеличенная длина
х+2 (дм) - увеличенная ширина
х(х+12)=(х+12+3)(х+2)-80
х²+12х=х²+17х+30-80
17х-12х=50
5х=50
х=10(дм) - ширина прямоугольника
10+12=22(дм) - длина
Для вычислений находим значение гипотенузы треугольника, лежащего в основании призмы по теореме Пифагора:
√((10)² + (24)²) = 26 см.
Боковая поверхность треугольной пирамиды состоит из 3 прямоугольников. Значит, ее площадь равна:
Sбп = S1 + S2 + S3, где S1, S2 и S3 — площади прямоугольников.
Площадь прямоугольника равна
S = ab, где a и b — стороны прямоугольника.
Найдем площадь первого прямоугольника:
S1 = 10* 5 = 50 см².
Найдем площадь второго прямоугольника:
S2 = 24 * 5 = 120 см².
Найдем площадь третьего прямоугольника:
S3 = 26 * 5 = 130 см².
Площадь боковой поверхности призмы:
Sбп = 50 + 120 + 130 = 300 см².
Площадь полной поверхности призмы равна
Sпп = Sбп + 2Sосн, где Sбп — площадь боковой поверхности, Sосн — площадь основания.
Sосн = ½ * 10 * 24 = 120 см².
Площадь полной поверхности призмы:
Sпп = 300 + 2 * 120 = 540 см².
ответ: площадь боковой поверхности призмы 300 см², площадь полной поверхности призмы 540 см².