Это довольно трудная задача если решать в лоб, но можно увидеть необычное использование теоремы Пифагора.
Если изобразить это уравнение, то это просто окружность с центром в точке (0,0) радиуса 3.
А пото внимательно смотрим на косинусы и получаем что по теореме Чевы можно их сложить, а значит получаем:
(переписываете исходное уравнение)
Снизу пишите по теореме Чевы - решения есть при любых а
Осталось эти решения найти. И тут то и применяем всю красоту математики. Пишем:
По т. Соса x=cos(x-2a)*S, S найдем по теореме Ницкого: S=14-12+2=4
x=4*a
Красиво? Мне кажется очень.
по примеру реши.
x^3 - 6x^2 + 11x - 6 = 0 можно, конечно, решить формулой кардано для решения кубических уравнений, но это долго и трудно. проще подобрать корни схемой горнера. возможные рациональные корни x = a/b, где а - делитель свободного члена, b - делитель старшего коэффициента. x = 1, -1, 2, -2, 3, -3, 6, -6 находишь значения в этих точках. y(1) = 1 - 6 + 11 - 6 = 0 - повезло сразу! теперь раскладываем: x^3 - x^2 - 5x^2 + 5x + 6x - 6 = 0 (x - 1)(x^2 - 5x + 6) = 0 (x - 1)(x - 2)(x - 3) = 0 ответ: x1 = 1, x2 = 2, x3 = 3
AB=√((6+6)+(7+2)²)=√255=15
BC=√((6-4)²+(7+7)²)=√200≈14.14
CA=√((4+6)²+(-7+2)²)=√125≈11.18
BC²=AB²+CA²-2*AB*CA*cos A
200=225+125-2*15*11.18*cos A
200=350-335.4*cos A
-335.4*cos A=-150
cos A=150/335.4
cos A=0.4472
A=63.4°