ответ: x1=−2 Точное решение: Дано линейное уравнение: -2*x*(3+x)+x*(2*x-3) = -6*(2*x+1) Раскрываем скобочки в левой части ур-ния -2*x3+x+x2*x-3 = -6*(2*x+1) Раскрываем скобочки в правой части ур-ния -2*x3+x+x2*x-3 = -6*2*x-6*1 Приводим подобные слагаемые в левой части ур-ния: x*(-3 + 2*x) - 2*x*(3 + x) = -6*2*x-6*1 Переносим свободные слагаемые (без x) из левой части в правую, получим: 3 + x*(-3 + 2*x) - 2*x*(3 + x) = -3 - 12*x Переносим слагаемые с неизвестным x из правой части в левую: 3 + 12*x + x*(-3 + 2*x) - 2*x*(3 + x) = -3 Разделим обе части ур-ния на (3 + 12*x + x*(-3 + 2*x) - 2*x*(3 + x))/x x = -3 / ((3 + 12*x + x*(-3 + 2*x) - 2*x*(3 + x))/x) Получим ответ: x = -2
Задача на движение. Часто в таких задачах речь идет о поездах. В нашем случае задача о скоростном и товарном поездах. Вспомним основную формулу для решения: V=S/t Если, вдруг забыли просто вспомните в чем измеряется скорость? Скорость V измеряется в КМ/ЧАС. КилоМетры это ПУТЬ (S), а ЧАСы это ВРЕМЯ (t). Скорость(V)=КМ(S)/ЧАС(T) или V=S/T. ДЛЯ Скорого поезда: T обозначим за Х (тогда время товарного поезда будет Х+3); Скорость V обозначим у (тогда скорость товарного будет у-20); Путь поезда один и тот же:S=360. Составим систему уравнений исходя из основной формулы. y=360/х (у-20)=360/х+3
решим: ху=360 (х+3)(у-20)=360 Правые части равны 360, значит и левые части между собой равны.
(х+3)(у-20)=ху Раскроем скобки и приведем подобные.
-20х+3у-60=0 При этом у=360/х - подставим правую часть этого выражения вместо у.
-20х+3(360/х)-60. Приведем к общ знаменателю (х).
-(20x^2 )/х + 1080/х-60х/х=0
(-20x^2 -60х+1080)/х=0 дробь может быть равна нулю только тогда, когда нулю равен числитель. В нашем случае в знаменателе х и х не может быть равен нулю, т.к. за Х мы обозначили время - это в любом случае положительное будет число.
Значит нулю равно выражение (числитель):
-20x^2 -60х+1080=0 Решим это квадратное уравнение.
Разделим на -20 для удобства.
x^2 +3х-54=0 Решаем квадратное уравнение. х1=6 х2=-9 -- этот результат нам не подходит, т.к. за х мы обозначили время, а это параметр положительный, значит -9 -- посторонний корень.
Остается х=6. Однако, это еще не ответ на вопрос задачи. Решаем дальше. Найти надо СКОРОСТИ поездов, их мы обозначили за У. у=360/х=360/6=60км/ч. 60-20=40км/ч ответ: скорость скоростного поезда 60км/ч; скорость товарного поезда 40 км/ч
Задача на движение. Часто в таких задачах речь идет о поездах. В нашем случае задача о скоростном и товарном поездах. Вспомним основную формулу для решения: V=S/t Если, вдруг забыли просто вспомните в чем измеряется скорость? Скорость V измеряется в КМ/ЧАС. КилоМетры это ПУТЬ (S), а ЧАСы это ВРЕМЯ (t). Скорость(V)=КМ(S)/ЧАС(T) или V=S/T. ДЛЯ Скорого поезда: T обозначим за Х (тогда время товарного поезда будет Х+3); Скорость V обозначим у (тогда скорость товарного будет у-20); Путь поезда один и тот же:S=360. Составим систему уравнений исходя из основной формулы. y=360/х (у-20)=360/х+3
решим: ху=360 (х+3)(у-20)=360 Правые части равны 360, значит и левые части между собой равны.
(х+3)(у-20)=ху Раскроем скобки и приведем подобные.
-20х+3у-60=0 При этом у=360/х - подставим правую часть этого выражения вместо у.
-20х+3(360/х)-60. Приведем к общ знаменателю (х).
-(20x^2 )/х + 1080/х-60х/х=0
(-20x^2 -60х+1080)/х=0 дробь может быть равна нулю только тогда, когда нулю равен числитель. В нашем случае в знаменателе х и х не может быть равен нулю, т.к. за Х мы обозначили время - это в любом случае положительное будет число.
Значит нулю равно выражение (числитель):
-20x^2 -60х+1080=0 Решим это квадратное уравнение.
Разделим на -20 для удобства.
x^2 +3х-54=0 Решаем квадратное уравнение. х1=6 х2=-9 -- этот результат нам не подходит, т.к. за х мы обозначили время, а это параметр положительный, значит -9 -- посторонний корень.
Остается х=6. Однако, это еще не ответ на вопрос задачи. Решаем дальше. Найти надо СКОРОСТИ поездов, их мы обозначили за У. у=360/х=360/6=60км/ч. 60-20=40км/ч ответ: скорость скоростного поезда 60км/ч; скорость товарного поезда 40 км/ч
Точное решение:
Дано линейное уравнение:
-2*x*(3+x)+x*(2*x-3) = -6*(2*x+1)
Раскрываем скобочки в левой части ур-ния
-2*x3+x+x2*x-3 = -6*(2*x+1)
Раскрываем скобочки в правой части ур-ния
-2*x3+x+x2*x-3 = -6*2*x-6*1
Приводим подобные слагаемые в левой части ур-ния:
x*(-3 + 2*x) - 2*x*(3 + x) = -6*2*x-6*1
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
3 + x*(-3 + 2*x) - 2*x*(3 + x) = -3 - 12*x
Переносим слагаемые с неизвестным x
из правой части в левую:
3 + 12*x + x*(-3 + 2*x) - 2*x*(3 + x) = -3
Разделим обе части ур-ния на (3 + 12*x + x*(-3 + 2*x) - 2*x*(3 + x))/x
x = -3 / ((3 + 12*x + x*(-3 + 2*x) - 2*x*(3 + x))/x)
Получим ответ: x = -2