Объяснение:
Графиком функции у=х² будет парабола.
Так как при х² коэффициент положителен (1 – положительное число), то ветви параболы будут направлены вверх.
У такой параболы значения на промежутке (–∞ ; х), где х – кордината х вершины параболы, будут уменьшаться. Следовательно чем меньше будет кордината х точки, принадлежащей графику функции, тем больше будет значение её кординаты у.
Координата х вершины параболы находится по формуле:
значения b и а берём из данной функции (вид у=ах²+bx+c), подставляем:
Получим что координатой х вершины данной параболы, будет х=0.
Тогда значения функции будут уменьшаться на промежутке (–∞ ; 0)
Наименьшим значением х на отрезке [–5;–1] будет х=–5.
При х=–5:
у=(–5)²;
у=25
Тогда наибольшее значение функции на данном отрезке будет у=25.
Итак, есть выражение
Единица - число целое, его и не рассматриваем, главное, чтобы дробь принимала целые значения. Как этого добиться?
Можно по-разному сгруппировать множители, есть два варианта, рассмотрим каждый из них и в конце объединим полученные значения
1) рассмотрим случай, когда
В этом случае 4 делится на , такие значения легко подбираются, самое главное найти те
пусть делится на
, тогда частное от деления некоторое число
Немного преобразуем, умножив на (оно не равно 0 ещё по условию)
Нужно решить полученное уравнение в целых числах. В данном случае все просто: произведение целых чисел равно единице либо когда каждое из чисел равно 1, либо -1.
То есть 1 вариант, когда
либо 2 вариант, когда
Самое главное, что 4 делится на оба полученных значения , то есть они точно пойдут в ответ.
Теперь рассматриваем случай 2):
считаем, что не делится на
нацело (когда делится, мы уже такие случаи нашли), и тогда остается только вариант такой:
Понятно, что при целых правый сомножитель всегда будет целым, значит, нужно добиться, чтобы левый тоже был целым.
Если совсем просто, то заменим , и имеем тогда выражение
, которое должно быть целым, отсюда следует, что
является делителем числа 4, а их немного на самом деле.
Правда, вспоминаем, что
Нам нужны целые числа, поэтому значения с корнями откидываются, а ещё вспоминаем, что общий ответ получается путем объединения случаев 1 и 2, но нам повезло, оба значения из случая 1 вошли в значения случая 2.
Вообще есть ещё случай группировки 3:
Но тут сразу видно, что при целых делимость нацело правого множителя невозможна при
(парабола растет быстрее прямой), а
(которые, к слову, сюда тоже подходят) мы уже рассмотрели.
ответ:
Если фраза "подходящая дробь" подразумевает подходящие дроби цепной дроби числа, то
689/83=8+1/(83/25)
83/25=3+1/(25/8)
25/8=3+1/8, т.е. разложение в цепную дробь будет [8;3,3,8]
Значит подходящие дроби будут 8/1,
8+1/3=25/3
8+1/(3+1/3)=83/10
и последняя 8+1(3+1/(3+1/8))=689/83
Т.к. 689/83-83/10=1/830>0,001, то нужная по условию задачи подходящая дробь будет равна исходному числу 689/83. Погрешность в этом случае будет равна 0.
Если же слово "подходящая" подразумевает, "какая-нибудь отличающаяся от исходной" то берем, например, дробь 4823/581-1/(581*2)=9645/1162, которая дает погрешность 1/(581*2)=1/1162<0,001.