Объяснение:
Решение квадратного неравенства
Неравенство вида
где x - переменная, a, b, c - числа, , называется квадратным.
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения . Для этого необходимо найти дискриминант данного квадратного уравнения. Можно получить 3 случая: 1) D=0, квадратное уравнение имеет один корень; 2) D>0 квадратное уравнение имеет два корня; 3) D<0 квадратное уравнение не имеет корней.
В зависимости от полученных корней и знака коэффициента a возможно одно из шести расположений графика функции
Если требуется найти числовой промежуток, на котором квадратный трехчлен больше нуля, то это числовой промежуток находится там, где парабола лежит выше оси ОХ.
Если требуется найти числовой промежуток, на котором квадратный трехчлен меньше нуля, то это числовой промежуток, где парабола лежит ниже оси ОХ.
Если квадратное неравенство нестрогое, то корни входят в числовой промежуток, если строгое - не входят.
Такой метод решения квадратного неравенства называется графическим.
Данный многочлен можно разложить на множители группировки. Сгруппируем 1 и 2, 3 и 4 множители и выпишем их в отдельных скобках:
(bm+3b)+(2cm+6c). Теперь, из каждой скобки вынесем общий множитель. В 1 скобке это b, а во 2 - 2с. Вынесем данные множители и получим:
b(m+3)+2c(m+3). Теперь общее выражение m+3 вынесем в скобках отдельно, а остальное запишем в других скобках:
(m+3)(b+2c). Это наше разложение, оно является ответом.
Оформление в тетради должно выглядеть так:
bm+3b+2cm+6c=b(m+3)+2c(m+3)=(m+3)(b+2c).
Найдем меньшее общее кратное 24 и 18 = 72 , умножаем на два = 144.
Если это число в промежутке между 101 и 200, значит мы решили правильно.
ответ: 144 дерева.