В решении.
Объяснение:
Освободиться от иррациональности в знаменателе.
1) b/2√5;
Умножить числитель и знаменатель на √5:
b/2√5 * √5/√5 = b *√5 /2√5 *√5 = b√5/2 * 5 = b√5/10;
2) 8/(3 - √t);
Умножить числитель и знаменатель на сопряжённое выражение
(3 + √t):
8/(3 - √t) * (3 + √t)/(3 + √t) =
= 8 * (3 + √t)/(3 - √t) * (3 + √t) =
в знаменателе развёрнута разность квадратов, свернуть:
= 8(3 + √t)/(3² - (√t)²) =
= 8(3 + √t)/(9 - t).
3) c/(√c + √5);
Умножить числитель и знаменатель на сопряжённое выражение
(√c - √5):
c/(√c + √5) * (√c - √5)/(√c - √5) =
= с * (√c - √5)/(√c + √5) * (√c - √5) =
в знаменателе развёрнута разность квадратов, свернуть:
=с * (√c - √5)/((√c)² - (√5)²) =
= с(√c - √5)/(с - 5).
ответ: 2 км/час.
Объяснение:
Дано. Катер плыл 2,3 ч по течению
и 3,5 ч против течения.
Всего он проплыл 133,9 км.
Найдите скорость течения, если
собственная скорость катера 23,5 км/ч.
Решение.
Обозначим скорость течения через х км/час.
Тогда скорость катера по течению будет 23,5+х км/час
скорость против течения --- 23,5 - х км/час.
S=vt.
Путь по течению равен
S1= (23,5+х)2.3 = 54.05 +2.3x км.
Путь против течения равен
S2=(23.5-x)3.5 = 82.25-3.5x км.
Весь путь равен 133,9 км.
Составим уравнение:
54,05+2,3х + 82,25-3,5х = 133,9;
2,3х-3,5х = 133,9-54,05-82,25;
-1,2х=-2,4;
х=2 км/час - скорость течения реки.
√x =9
x=81
b) 1/2x² = 0
x² = 0
x = 0